1.单选题- (共9题)
8.
某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:
那么这9名学生所得分数的众数和中位数分别是( )
人数(人) | 1 | 3 | 4 | 1 |
分数(分) | 80 | 85 | 90 | 95 |
那么这9名学生所得分数的众数和中位数分别是( )
A.90,87.5 | B.90,85 | C.90,90 | D.85,85 |
2.填空题- (共5题)
3.解答题- (共10题)
17.
某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.

(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?

(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
18.
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<
时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<

②在点P运动过程中,当S=3,请直接写出t的值.
19.
如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子
的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点
的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:
,
)





22.
在正方形
中,过点A引射线
,交边
于点H(H不与点D重合).通过翻折,使点B落在射线
上的点G处,折痕
交
于E,连接E,G并延长
交
于








A. (1)如图1,当点H与点C重合时, ![]() ![]() ![]() (2)如图2,当点H为边 ![]() ![]() ![]() ![]() (3)在图2,当 ![]() ![]() ![]() ![]() ![]() |
23.
《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(5道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:9
9星难题:6