1.单选题- (共10题)
3.
明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是( )


A.1个 | B.2个 | C.3个 | D.4个 |
10.
某区选取了10名同学参加兴隆台区“汉字听取大赛”,他们的年龄(单位:岁)记录如下:
这些同学年龄的众数和中位数分别是( )
年龄(单位:岁) | 13 | 14 | 15 | 16 | 17 |
人数 | 2 | 2 | 3 | 2 | 1 |
这些同学年龄的众数和中位数分别是( )
A.15,15 | B.15,16 | C.3,3 | D.3,15 |
2.填空题- (共4题)
13.
如图,在等腰直角三角形ACD,∠ACD=90°,AC=
,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________。


3.解答题- (共9题)
16.
如图1是一个长时间没有使用的弹簧测力计,经刻度盘,指针,吊环,挂钩等个部件都齐全,但小明还是对其准确程度表示怀疑,于是他利用数学知识对这个弹簧测力计进行检验。下表是他记录的数据的一部分:
在整理数据的过程中,他发现在所挂物体的质量不超过1㎏时,弹簧的长度与弹簧所挂物体的质量之间存在着函数关系,于是弹簧所挂物体的质量x㎏,弹簧的长度为ycm。
(1)请你利用如图2的坐标系,描点并画出函数的大致图象。
(2)根据函数图象,猜想y与x之间是怎样的函数,求出对应的函数解析式。
(3)你认为该测力计是否可以正常使用,如果可以,请你求出所挂物体的质量为1㎏时,弹簧的长度;如果不可以,请说明理由。
弹簧所挂物体的质量(单位:㎏) | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
弹簧的长度(单位cm) | 12 | 12.5 | 13 | 13.5 | 14 |
在整理数据的过程中,他发现在所挂物体的质量不超过1㎏时,弹簧的长度与弹簧所挂物体的质量之间存在着函数关系,于是弹簧所挂物体的质量x㎏,弹簧的长度为ycm。
(1)请你利用如图2的坐标系,描点并画出函数的大致图象。
(2)根据函数图象,猜想y与x之间是怎样的函数,求出对应的函数解析式。
(3)你认为该测力计是否可以正常使用,如果可以,请你求出所挂物体的质量为1㎏时,弹簧的长度;如果不可以,请说明理由。

17.
甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。

18.
如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。
(1)求A,B两点的坐标;
(2)当ΔABC的面积为6时,求点C的坐标;
(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。
(1)求A,B两点的坐标;
(2)当ΔABC的面积为6时,求点C的坐标;
(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。

19.
如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。

(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。

20.
如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。
(1)求证:四边形ABEF是平行四边形;
(2)当AB=AC时,求证:四边形AECF时矩形;
(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。
(1)求证:四边形ABEF是平行四边形;
(2)当AB=AC时,求证:四边形AECF时矩形;
(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。

21.
如图是一块四边形的草坪ABCD,经测量得到以下数据:CD=AC=2BC=20
m,AB=10
m,∠ACD=90°。

(1)求AD的长;
(2)求∠ABC的度数;
(3)求四边形ABCD的面积。



(1)求AD的长;
(2)求∠ABC的度数;
(3)求四边形ABCD的面积。
22.
如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。
(1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;
(2)在图2上,画出一个菱形ABCD,并求出它的面积。
(1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;
(2)在图2上,画出一个菱形ABCD,并求出它的面积。

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:20
7星难题:0
8星难题:0
9星难题:3