1.单选题- (共7题)
5.
为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指( )
A.200 |
B.我县2019年八年级学生期末数学成绩 |
C.被抽取的200名八年级学生 |
D.被抽取的200名我县八年级学生期末数学成绩 |
7.
如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是


A.S1>S2 | B.S1=S2 | C.S1<S2 | D.3S1=2S2 |
2.选择题- (共4题)
8.常说的萝卜,在分类上是属于萝卜属(RapHanus)的植物,由林奈(姓氏的简写为L )命名,为了表示可食用的萝卜是人类长期培育成的,使用了“SATIVUS(栽培的)”一词做它的种名。那么,萝卜的“学名”,即萝卜的国际通用名称是 ( )
3.填空题- (共9题)
18.
如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=2
.则四边形ABFE′的面积是_____.


20.
小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
通话时间x/min | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
频数(通话次数) | 20 | 16 | 9 | 5 |
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
4.解答题- (共10题)
24.
为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
25.
如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=
(m≠0)的图象在第一象限有公共点A(1,2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?

(1)求一次函数与反比例函数的解析式;
(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?

26.
如图1,在平面直角坐标系中,正方形ABCD顶点C(3,0),顶点D(0,4),过点A作AF⊥y轴于F点,过点B作x轴的垂线交过A点的反比例函数y=
(k>0)的图象于E点,交x轴于G点.
(1)求证:△CDO≌△DAF.
(2)求反比例函数解析式及点E的坐标;
(3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.

(1)求证:△CDO≌△DAF.
(2)求反比例函数解析式及点E的坐标;
(3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.

27.
喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?

28.
如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

29.
已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是 .
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是 .
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(4道)
填空题:(9道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:14
7星难题:0
8星难题:3
9星难题:7