1.单选题- (共10题)
6.
如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于
EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为( )



A.1 | B.1![]() | C.3 | D.2![]() |
7.
河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A.中位数是12.7% | B.众数是15.3% |
C.平均数是15.98% | D.方差是0 |
8.
某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:

该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )

该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )
A.方差 | B.平均数 | C.中位数 | D.众数 |
2.填空题- (共6题)
3.解答题- (共8题)
18.
如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求一次函数y=kx+b的解析式;
(2)若点D在y轴负半轴上,且满足S△COD═
S△BOC,请直接写出点D的坐标.
(1)求一次函数y=kx+b的解析式;
(2)若点D在y轴负半轴上,且满足S△COD═


19.
一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?
(1)求y关于x的函数关系式;
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?

20.
为了落实党的“精准扶贫”政策,
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
A.,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C,D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C, D两乡运肥料的费用分别为15元/吨和24元/吨。现C乡需要肥料240吨,D乡需要肥料260吨. |
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
21.
如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.

22.
如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点
A.![]() (1)求证:△ABE≌△FC | B. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。 |
23.
问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=
∠BAC=60°,于是
=
;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接B






迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接B
A. ①求证:△ADB≌△AEC; ②请直接写出线段AD,BD,CD之间的等量关系式; 拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,C | B. ①证明△CEF是等边三角形; ②若AE=5,CE=2,求BF的长。 |



试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:13
7星难题:0
8星难题:4
9星难题:7