1.单选题- (共13题)
2.
在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的
,则该矩形发生的变化为( )

A.向左平移了![]() | B.向下平移了![]() |
C.横向压缩为原来的一半 | D.纵向压缩为原来的一半 |
5.
A、B两地相距20千米,甲、乙两人都从A地去B地,图中
和
分别表示甲、乙两人所走路程
(千米)与时刻
(小时)之间的关系.下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时;
④乙先到达B地.
其中正确的个数是( )





①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时;
④乙先到达B地.
其中正确的个数是( )

A.1 | B.2 | C.3 | D.4 |
6.
一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误的是( )

A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km
C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h

A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km
C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h
8.
在平面直角坐标系中,方程2x+3y=4所对应的直线为a,方程3x+2y=4所对应的直线为b,直线a与b的交点为P(m,n),下列说法错误的是( )
A.![]() | B.![]() |
C.![]() ![]() | D.以上说法均错误 |
9.
某校公布了该校反映各年级学生体育达标情况的两张统计图(如图),该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是( )


A.甲和乙 | B.乙和丙 | C.甲和丙 | D.甲、乙和丙 |
12.
如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是( )


A.2 | B.3 | C.4 | D.5 |
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共2题)
20.
新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
试卷分析
-
【1】题量占比
单选题:(13道)
选择题:(2道)
填空题:(4道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:1
7星难题:0
8星难题:9
9星难题:8