1.单选题- (共5题)
1.
如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的
,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的( )



A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共6题)
3.解答题- (共9题)
12.
如图,点A在直线l外,点B在直线l上.
(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)
(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.
(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)
(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.

13.
定义:一条对角线垂直平分另一条对角线的四边形叫做筝形,如图,筝形ABCD的对角线AC、BD相交于点O.且AC垂直平分BD.
(1)请结合图形,写出筝形两种不同类型的性质:性质1: ;性质2: .
(2)若AB∥CD,求证:四边形ABCD为菱形.
(1)请结合图形,写出筝形两种不同类型的性质:性质1: ;性质2: .
(2)若AB∥CD,求证:四边形ABCD为菱形.

14.
如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点.
(2)当△ABC满足什么条件时,四边形AFBD是正方形,并说明理由.
(1)求证:D是BC的中点.
(2)当△ABC满足什么条件时,四边形AFBD是正方形,并说明理由.

15.
若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形”.
(1)下列四边形一定是巧妙四边形的是 ;(填序号点①平行四边形;②矩形;③菱形;④正方形.
初步应用
(2)在绝妙四边形ABCD中,AC垂直平分BD,若∠BAD=80°,则∠BCD= ;
深入研究
(3)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求证:梯形ABCD是绝妙四边形.
(4)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.
(1)下列四边形一定是巧妙四边形的是 ;(填序号点①平行四边形;②矩形;③菱形;④正方形.
初步应用
(2)在绝妙四边形ABCD中,AC垂直平分BD,若∠BAD=80°,则∠BCD= ;
深入研究
(3)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求证:梯形ABCD是绝妙四边形.
(4)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.

17.
已知△ABC的三个顶点的坐标分别为A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)画出△ABC关于坐标原点O成中心对称的△A′B'C′;
(2)将△ABC绕坐标原点O顺时针旋转90°,画出对应的△A″B″C″;
(3)若以A'、B'、C′、D′为顶点的四边形为平行四边形,则在第四象限中的点D'坐标为 .
(1)画出△ABC关于坐标原点O成中心对称的△A′B'C′;
(2)将△ABC绕坐标原点O顺时针旋转90°,画出对应的△A″B″C″;
(3)若以A'、B'、C′、D′为顶点的四边形为平行四边形,则在第四象限中的点D'坐标为 .

19.
某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是 ;
(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;
(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是 ;
(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;
(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:4
7星难题:0
8星难题:2
9星难题:13