1.单选题- (共8题)
5.
如图,已知一次函数y=kx+2的图象与x轴,y轴分别交于点A,B,与正比例函数y=
x交于点C,已知点C的横坐标为2,下列结论:①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③对于直线y=kx+2,当x>0时,y>2;④方程组
的解为
,其中正确的是( )





A.①②③ | B.①②④ | C.①③④ | D.②③④ |
8.
为了了解阳光居民小区“全民健身”活动的开展情况,某志愿者随机调查了该小区50名成年居民一周的体育锻炼时间,并将数据进行整理后绘制成如图所示的统计图,则这50人一周体育锻炼时间的众数是( )


A.6小时 | B.20人 | C.10小时 | D.3人 |
2.选择题- (共1题)
3.填空题- (共8题)
11.
2018年6月14日,第21届世界杯足球赛在俄罗斯举行.小李在网上预定了小组赛和决赛两个阶段的门票共10张,总价为15800元,其中小组赛门票每张850元,决赛门票每张4500元,若设小李预定了小组赛门票x张,决赛门票y张,根据题意,可列方程组为_____.
12.
如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.

17.
如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.

4.解答题- (共9题)
20.
某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位
(1)求该公司A,B两种车型各有多少个座位?
(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)
(1)求该公司A,B两种车型各有多少个座位?
(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)
21.
如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.
(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)在x轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.
(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)在x轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.

22.
某种水泥储存罐的容量为25m3,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3min后,再打开输出口,匀速向运输车输出水泥,又经过2.5min水泥储存罐注满.已知水泥储存罐内的水泥量y(m3)与时间x(min)之间的函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量;
(2)当3≤x≤5.5时,求y与x之间的函数关系式;
(3)水泥储存罐每分钟向运输车输出的水泥量是多少立方米?
(1)求每分钟向储存罐内注入的水泥量;
(2)当3≤x≤5.5时,求y与x之间的函数关系式;
(3)水泥储存罐每分钟向运输车输出的水泥量是多少立方米?

23.
如图,直线y=
x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数表达式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.
①若∠MBC=90°,求点P的坐标;
②若△PQB的面积为
,请直接写出点M的坐标.

(1)求直线BC的函数表达式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.
①若∠MBC=90°,求点P的坐标;
②若△PQB的面积为


24.
已知,如图,AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
求证:AC⊥BD

请将下列证明过程中的空格补充完整.
证明:∵AB∥CD,
∴∠ABC=∠DCF.(_____)
∵BD平分∠ABC,CE平分∠DCF,
∴∠2=
∠ABC,∠4=
∠DCF.(_____)
∴_______.
∴BD∥C
求证:AC⊥BD

请将下列证明过程中的空格补充完整.
证明:∵AB∥CD,
∴∠ABC=∠DCF.(_____)
∵BD平分∠ABC,CE平分∠DCF,
∴∠2=


∴_______.
∴BD∥C
A.(_______) ∴______.(两直线平行,内错角相等) ∵∠ACE=90°, ∴∠BGC=90°,即AC⊥B | B.(_____) |
25.
我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”
概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)
(1)∠ABO的度数为 ,△AOB (填“是”或“不是”)“和谐三角形”;
(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.
应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠

概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)
(1)∠ABO的度数为 ,△AOB (填“是”或“不是”)“和谐三角形”;
(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.
应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠
A.若△BCD是“和谐三角形”,求∠B的度数. |

26.
随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成如下两幅不完整的统计图表.
请你根据统计图表提供的信息,解答下列问题:
(1)本次被调查的家庭有 户,表中m= ;
(2)请说明本次调查数据的中位数落在哪一组?
(3)在扇形统计图中,D组所在扇形的圆心角为多少度?
(4)这个社区有2500户家庭,请你估计年文化教育消费在10000元以上的家庭有多少户?
组別 | 家庭年文化教育消费金额x(元) | 户数 |
A | x≤5000 | 36 |
B | 5000<x≤10000 | 27 |
C | 10000<x≤15000 | m |
D | 15000<x≤20000 | 33 |
E | x>20000 | 30 |
请你根据统计图表提供的信息,解答下列问题:
(1)本次被调查的家庭有 户,表中m= ;
(2)请说明本次调查数据的中位数落在哪一组?
(3)在扇形统计图中,D组所在扇形的圆心角为多少度?
(4)这个社区有2500户家庭,请你估计年文化教育消费在10000元以上的家庭有多少户?

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(8道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:17
9星难题:5