1.单选题- (共8题)
2.填空题- (共8题)
12.
如果一个正整数能表示成两个连续偶数的平方差,那么称这个数为“神秘数”,如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.请你写出一个类似的等式:________________.
3.解答题- (共5题)
17.
阅读:99×99+199=992+198+1=992+2×99×1+12=(99+1)2=104.
(1)计算:999×999+1999;
(2)999999×999999+1999999的值为多少?请写出计算过程.
(1)计算:999×999+1999;
(2)999999×999999+1999999的值为多少?请写出计算过程.
19.
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解为(x+a)2的形式,但是,对于一般二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其成为完全平方式,再减去这项,使整个式子的值不变,如x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面这样把二次三项式分解因式的方法叫做配方法.用上述方法把m2-6m+8分解因式.
20.
阅读下列因式分解的过程,解答下列问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.
(1)上述分解因式的方法是____________,共应用了________次;
(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.
(1)上述分解因式的方法是____________,共应用了________次;
(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(8道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:17
7星难题:0
8星难题:0
9星难题:3