1.单选题- (共7题)
3.
甲、乙两个工程队各有员工80、100人,现在从外部调90人充实两队,调配后,甲队人数是乙队人数的
,则甲、乙两队各分配了( )人

A.50,40 | B.35,55 | C.28,62 | D.20,70 |
2.选择题- (共1题)
8.
以经济建设为中心( )
①是兴国之要,是我们党、我们国家兴旺发达和长治久安的根本要求
②是立国之本,是我们党、我们国家发展进步的活力源泉
③就是要把集中力量发展社会生产力摆在首要地位
④就是经济建设必须服从和服务于各项工作
3.填空题- (共7题)
4.解答题- (共9题)
17.
如图1是一个长为2a,宽为2b(a>b)的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)写出图2的阴影部分的正方形的边长.
(2)用两种不同的方法求图中的阴影部分的面积.
(3)观察如图2,写出
这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:若
求
的值
(1)写出图2的阴影部分的正方形的边长.
(2)用两种不同的方法求图中的阴影部分的面积.
(3)观察如图2,写出

(4)根据(3)题中的等量关系,解决问题:若



19.
下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程。
解:设x2-4x=y,则原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列问题:
(1)该同学第二步到第三步运用了因式分解的方法是( )
(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”)。若不彻底,请直接写出因式分解的最后结果._____________。
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解。
解:设x2-4x=y,则原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列问题:
(1)该同学第二步到第三步运用了因式分解的方法是( )
A.提取公因式 | B.平方差公式 |
C.两数和的完全平方公式 | D.两数差的完全平方公式 |
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解。
21.
常德市为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.若王大爷家一月份用水16吨,需交水费49元,二月份用水20吨,需交水费63元.
(1)求每吨水的基础价和调节价;
(2)若王大爷家三月份交了77元的水费,请问他家用了多少吨水?
(1)求每吨水的基础价和调节价;
(2)若王大爷家三月份交了77元的水费,请问他家用了多少吨水?
23.
如图1所示,已知BC∥OA,∠B=∠A=120°
(1)说明OB∥AC成立的理由.
(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.
(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.
(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.
(1)说明OB∥AC成立的理由.
(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.
(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.
(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.

24.
下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 | B.平方差公式 | C.两数和的完全平方公式 | D.两数差的完全平方公式 |
若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(7道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:13
9星难题:5