1.单选题- (共2题)
2.解答题- (共2题)
3.
阅读以下材料,并按要求完成相应的任务.
已知平面上两点
,则所有符合
且
的点
会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.
阿氏圆基本解法:构造三角形相似.
(问题)如图1,在平面直角坐标中,在
轴,
轴上分别有点
,点
是平面内一动点,且
,设
,求
的最小值.

阿氏圆的关键解题步骤:
第一步:如图1,在
上取点
,使得
;
第二步:证明
;第三步:连接
,此时
即为所求的最小值.
下面是该题的解答过程(部分):
解:在
上取点
,使得
,
又
.
任务:
将以上解答过程补充完整.
如图2,在
中,
为
内一动点,满足
,利用
中的结论,请直接写出
的最小值.
已知平面上两点




阿氏圆基本解法:构造三角形相似.
(问题)如图1,在平面直角坐标中,在








阿氏圆的关键解题步骤:
第一步:如图1,在



第二步:证明



下面是该题的解答过程(部分):
解:在



又

任务:









试卷分析
-
【1】题量占比
单选题:(2道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:4