1.单选题- (共6题)
3.
如图,△ABC中,AB=AC=7,BC=5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长为( )


A.10 | B.12 | C.14 | D.19 |
6.
第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上
的一部份图形,其中不是轴对称图形的是( )

A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共7题)
8.
阅读下面材料:
在数学课上,老师提出如下问题:

尺规作图:
已知:线段a,b.
求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.
小涛的作图步骤如下:
如图
(1)作线段BC=a;
(2)作线段BC的垂直平分线MN交线段BC
于点D;
(3)在MN上截取线段DA=b,连接AB,AC.
所以△ABC即为所求作的等腰三角形.
老师说:“小涛的作图步骤正确”.
请回答:得到△ABC是等腰三角形的依据是:
①_____;
②_____.
在数学课上,老师提出如下问题:

尺规作图:
已知:线段a,b.
求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.
小涛的作图步骤如下:
如图
(1)作线段BC=a;
(2)作线段BC的垂直平分线MN交线段BC
于点D;
(3)在MN上截取线段DA=b,连接AB,AC.
所以△ABC即为所求作的等腰三角形.
老师说:“小涛的作图步骤正确”.
请回答:得到△ABC是等腰三角形的依据是:
①_____;
②_____.
3.解答题- (共10题)
14.
观察下列各式
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
…
①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.
②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.
③根据②求出:1+2+22+…+234+235的结果.
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
…
①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.
②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.
③根据②求出:1+2+22+…+234+235的结果.
18.
作图题:(不写作法,但必须保留作图痕迹)
如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.
如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.

20.
已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F. 试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F. 试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.

21.
在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接A
A.![]() (1)当点C在线段BD上时, ①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为________; ②如图2,若点C不与点D重合,请证明AE=BF+CD; (2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系,不用证明. |
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(7道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:9
9星难题:5