1.单选题- (共12题)
2.
下面是芳芳同学计算(a•a2)3的过程:
解:(a•a2)3=a3•(a2)3…①
=a3•a6…②
=a9…③
则步骤①②③依据的运算性质分别是( )
解:(a•a2)3=a3•(a2)3…①
=a3•a6…②
=a9…③
则步骤①②③依据的运算性质分别是( )
A.积的乘方,幂的乘方,同底数幂的乘法 |
B.幂的乘方,积的乘方,同底数幂的乘法 |
C.同底数幂的乘法,幂的乘方,积的乘方 |
D.幂的乘方,同底数幂的乘法,积的乘方 |
3.
如图1是一个边长分别为2x,2y的长方形纸片(x>y),沿长方形纸片的两条对称轴剪开,得到四块形状和大小都相同的小长方形,拼成如图2所示的一个正方形,则中间空白部分的面积是( )


A.![]() | B.![]() | C.![]() | D.![]() |
7.
某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
10.
平面上五条直线l1,l2,l3,l4和l5相交的情形如图所示,根据图中标出的角度,下列叙述正确的是( )


A.![]() ![]() ![]() ![]() |
B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() |
D.![]() ![]() ![]() ![]() |
12.
如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共5题)
13.
我国南宋数学家杨辉用三角形系数表解释二项和的乘方规律,称之为“杨辉三角”.下面给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):

请根据上述规律,写出(x+
)2018的展开式中含x2016项的系数是______.

请根据上述规律,写出(x+

3.解答题- (共8题)
18.
王老师在黑板上写下了四个算式:
①32-12=(3+1)(3-1)=8=8×1,
②52-32=(5+3)(5-3)=16=8×2,
③72-52=(7+5)(7-5)=24=8×3,
④92-72=(9+7)(9-7)=32=8×4.
…
认真观察这些算式,并结合你发现的规律,解答下列问题:
(1)请再写出另外两个符合规律的算式:
算式①______;
算式②______.
(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.
①32-12=(3+1)(3-1)=8=8×1,
②52-32=(5+3)(5-3)=16=8×2,
③72-52=(7+5)(7-5)=24=8×3,
④92-72=(9+7)(9-7)=32=8×4.
…
认真观察这些算式,并结合你发现的规律,解答下列问题:
(1)请再写出另外两个符合规律的算式:
算式①______;
算式②______.
(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.
21.
在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建一条210米长的公路,甲队每天修建15米,乙队每天修建25米,一共用10天完成.
根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:
小红:
小芳:
(1)请你分别写出小红和小芳所列方程组中未知数x,y表示的意义:
小红:x表示______,y表示______;
小芳:x表示______,y表示______;
(2)在题中“( )”内把小红和小芳所列方程组补充完整;
(3)甲工程队一共修建了______天,乙工程队一共修建了______米.
根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:
小红:


(1)请你分别写出小红和小芳所列方程组中未知数x,y表示的意义:
小红:x表示______,y表示______;
小芳:x表示______,y表示______;
(2)在题中“( )”内把小红和小芳所列方程组补充完整;
(3)甲工程队一共修建了______天,乙工程队一共修建了______米.
22.
某企业用规格是170×40的标准板材作为原材料,按照如图1所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)

(1)求图中a,b的值;
(2)若将50张标准板材按裁法一裁剪,10张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图2的竖式与横式两种无盖的装饰盒若干(接缝处的长度忽略不计).

①一共可裁剪出甲型板材______张,乙型板材______张;
②设可以做出竖式和横式两种无盖装饰盒一共x个,则x的最大值是______.

(1)求图中a,b的值;
(2)若将50张标准板材按裁法一裁剪,10张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图2的竖式与横式两种无盖的装饰盒若干(接缝处的长度忽略不计).

①一共可裁剪出甲型板材______张,乙型板材______张;
②设可以做出竖式和横式两种无盖装饰盒一共x个,则x的最大值是______.
23.
请把以下证明过程补充完整:
已知:如图,∠A=∠F,∠C=∠D.点B,E分别在线段AC,DF上,对∠1=∠2进行说理.

理由:∵∠A=∠F(已知)
∴______∥FD (______)
∴∠D=______(两直线平行,内错角相等)
∵∠C=∠D(已知)
∴______=∠C(等量代换)
∴______∥______(同位角相等,两直线平行)
∴∠1=∠3(______)
∵∠2=∠3(______)
∴∠1=∠2(等量代换).
已知:如图,∠A=∠F,∠C=∠D.点B,E分别在线段AC,DF上,对∠1=∠2进行说理.

理由:∵∠A=∠F(已知)
∴______∥FD (______)
∴∠D=______(两直线平行,内错角相等)
∵∠C=∠D(已知)
∴______=∠C(等量代换)
∴______∥______(同位角相等,两直线平行)
∴∠1=∠3(______)
∵∠2=∠3(______)
∴∠1=∠2(等量代换).
24.
如图,在△ABC中,AD是高,AE是角平分线.
(1)若∠B=30°,∠C=70°,则∠CAE=______°,∠DAE=______°.
(2>若∠B=40°,∠C=80°.则∠DAE=______°.
(3)通过探究,小明发现将(2)中的条件“∠B=40°,∠C=80°”改为“∠C-∠B=40°”,也求出了∠DAE的度数,请你写出小明的求解过程.
(1)若∠B=30°,∠C=70°,则∠CAE=______°,∠DAE=______°.
(2>若∠B=40°,∠C=80°.则∠DAE=______°.
(3)通过探究,小明发现将(2)中的条件“∠B=40°,∠C=80°”改为“∠C-∠B=40°”,也求出了∠DAE的度数,请你写出小明的求解过程.

试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:12
7星难题:0
8星难题:11
9星难题:2