1.单选题- (共10题)
1.
从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如
图2),上述操作所能验证的等式是

图2),上述操作所能验证的等式是

A.a2–b2=(a+b)(a-b) | B.(a–b)2=a2–2ab+b2 |
C.(a+b)2=a2+2ab+b2 | D.a2+ab=a(a+b) |
9.
在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )


A.a2-b2=(a+b)(a-b) |
B.(a+b)2=a2+2ab+b2 |
C.(a-b)2=a2-2ab+b2 |
D.a2-ab=a(a-b) |
2.填空题- (共8题)
3.解答题- (共6题)
22.
小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用下表来记录了两人5天的读书进程.

例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.
(1)表中空白部分从左到右2个数据依次为____,_____;
(2)小明、小红每人每天各读多少页?

例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.
(1)表中空白部分从左到右2个数据依次为____,_____;
(2)小明、小红每人每天各读多少页?
23.
在△ABC中,∠C>∠B.如图①,AD⊥BC于点D,AE平分∠BAC.
(1)如图①,∠B=40°,∠C=70°,求∠DAE的度数.
(2)如图②,AE平分∠BAC,F为AE上的一点,且FD⊥BC于点D,这时∠EFD与∠B、∠C有何数量关系?请说明理由.
(3)如图③,AE平分∠BAC,F为AE延长线上的一点,FD⊥BC于点D,请你写出这时∠EFD与∠B、∠C之间的数量关系(只写结论,不必说明理由).
(1)如图①,∠B=40°,∠C=70°,求∠DAE的度数.
(2)如图②,AE平分∠BAC,F为AE上的一点,且FD⊥BC于点D,这时∠EFD与∠B、∠C有何数量关系?请说明理由.
(3)如图③,AE平分∠BAC,F为AE延长线上的一点,FD⊥BC于点D,请你写出这时∠EFD与∠B、∠C之间的数量关系(只写结论,不必说明理由).

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:6
7星难题:0
8星难题:12
9星难题:6