1.单选题- (共2题)
2.
将正整数1,2,3,4……按以下方式排列
1 4 → 5 8 → 912 → ……
↓ ↑ ↓ ↑ ↓ ↑
2 → 36 → 7 10 → 11
根据排列规律,从2010到2012的箭头依次为
1 4 → 5 8 → 912 → ……
↓ ↑ ↓ ↑ ↓ ↑
2 → 36 → 7 10 → 11
根据排列规律,从2010到2012的箭头依次为
A.↓ → | B.→ ↓ | C.↑ → | D.→ ↑ |
2.填空题- (共4题)
3.解答题- (共4题)
7.
阅读下列材料并解决有关问题:
我们知道,
现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m-2|时,可令m+1=0和m-2=0,分别求得m=-1,m=2(称-1,2分别为|m+1|与|m-2|的零点值).在实数范围内,零点值m=-1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:
(1)m<-1;(2)-1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m-2|可分以下3种情况:
(1)当m<-1时,原式=-(m+1)-(m-2)=-2m+1;
(2)当-1≤m<2时,原式=m+1-(m-2)=3;
(3)当m≥2时,原式=m+1+m-2=2m-1.
综上讨论,
通过以上阅读,请你解决以下问题:
(1)分别求出|x-5|和|x-4|的零点值;
(2)化简代数式|x-5|+|x-4|.
(3)求代数式|x-5|+|x-4|的最小值.
我们知道,

(1)m<-1;(2)-1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m-2|可分以下3种情况:
(1)当m<-1时,原式=-(m+1)-(m-2)=-2m+1;
(2)当-1≤m<2时,原式=m+1-(m-2)=3;
(3)当m≥2时,原式=m+1+m-2=2m-1.
综上讨论,

通过以上阅读,请你解决以下问题:
(1)分别求出|x-5|和|x-4|的零点值;
(2)化简代数式|x-5|+|x-4|.
(3)求代数式|x-5|+|x-4|的最小值.
8.
某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2g,现记录如下:
(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多了多少克?
(2)若标准质量为100g/袋,则这次抽样检测的总质量是多少克?
与标准质量的误差(g) | -5 | -2 | 0 | +1 | +3 | +6 |
袋数 | 5 | 3 | 3 | 4 | 2 | 3 |
(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多了多少克?
(2)若标准质量为100g/袋,则这次抽样检测的总质量是多少克?
9.
图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了
层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
.
如果图3、图4中的圆圈均有13层.

(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;
(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)


如果图3、图4中的圆圈均有13层.

(1)我们自上往下,在每个圆圈中都图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,…,求最底层最右边圆圈内的数是________;
(3)求图4中所有圆圈中各数值的绝对值之和.(写出计算过程)
试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:1
7星难题:0
8星难题:1
9星难题:8