1.单选题- (共5题)
2.填空题- (共5题)
7.
如图,在平面直角坐标系中,点P在函数y=
(x>0)的图象上.过点P分别作x轴、y轴的垂线,垂足分别为A、B,取线段OB的中点C,连结PC并延长交x轴于点D.则△APD的面积为_____.


9.
如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为( )


A.﹣2 | B.1 | C.![]() | D.2 |
3.解答题- (共7题)
13.
如图,在平面直角坐标系中,点A,B的坐标分别为(6,6),(6,0),抛物线y=﹣(x﹣m)2+n的顶点P在折线OA﹣AB上运动.

(1)当点P在线段OA上运动时,抛物线y=﹣(x﹣m)2+n与y轴交点坐标为(0,c).
①用含m的代数式表示n,
②求c的取值范围.
(2)当抛物线y=﹣(x﹣m)2+n经过点B时,求抛物线所对应的函数表达式;
(3)当抛物线与△ABO的边有三个公共点时,直接写出点P的坐标.

(1)当点P在线段OA上运动时,抛物线y=﹣(x﹣m)2+n与y轴交点坐标为(0,c).
①用含m的代数式表示n,
②求c的取值范围.
(2)当抛物线y=﹣(x﹣m)2+n经过点B时,求抛物线所对应的函数表达式;
(3)当抛物线与△ABO的边有三个公共点时,直接写出点P的坐标.
14.
甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地.设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示.
(1)求甲车行驶的速度.
(2)求甲车到达B地后y与x之间的函数关系式.
(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.
(1)求甲车行驶的速度.
(2)求甲车到达B地后y与x之间的函数关系式.
(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间.

15.
如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.
(1)用含t的代数式表示线段DC的长;
(2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.
(1)用含t的代数式表示线段DC的长;
(2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.

16.
图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:5
9星难题:7