1.单选题- (共5题)
2.选择题- (共3题)
6.
完成下面填空。
名称 | 民族 | 时间 | 建立者 | 都城 |
辽 | {#blank#}1{#/blank#} | {#blank#}2{#/blank#} | {#blank#}3{#/blank#} | {#blank#}4{#/blank#} |
北宋 | {#blank#}5{#/blank#} | {#blank#}6{#/blank#} | {#blank#}7{#/blank#} | {#blank#}8{#/blank#} |
西夏 | {#blank#}9{#/blank#} | {#blank#}10{#/blank#} | {#blank#}11{#/blank#} | {#blank#}12{#/blank#} |
金 | {#blank#}13{#/blank#} | {#blank#}14{#/blank#} | {#blank#}15{#/blank#} | {#blank#}16{#/blank#} |
3.填空题- (共4题)
10.
如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=
(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).则点F的坐标是_________________


4.解答题- (共5题)
13.
为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
15.
设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为 ;
(2)求点
到直线
的距离;
(3)如果点
到直线
的距离为3,求a的值.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为 ;
(2)求点


(3)如果点


16.
如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(3道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:3
7星难题:0
8星难题:1
9星难题:7