1.单选题- (共7题)
5.
甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
7.
一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )
A.100(1+x)=121 | B.100(1-x)=121 | C.100(1+x)2=121 | D.100(1-x)2=121 |
2.选择题- (共2题)
8.
人们在长期的茶叶生产和消费过程中,形成了包括茶俗、茶礼、茶艺、茶道和茶理等在内的独具特色的茶文化。茶文化的发展不断丰富着中华文化,成为中华文化的一朵奇葩。这说明( )
①文化引导和制约着社会实践的发展 ②实践是文化创新的源泉和动力 ③人民群众是文化创造的主体 ④各民族文化共同构成中华文化
9.
人们在长期的茶叶生产和消费过程中,形成了包括茶俗、茶礼、茶艺、茶道和茶理等在内的独具特色的茶文化。茶文化的发展不断丰富着中华文化,成为中华文化的一朵奇葩。这说明( )
①文化引导和制约着社会实践的发展 ②实践是文化创新的源泉和动力 ③人民群众是文化创造的主体 ④各民族文化共同构成中华文化
3.填空题- (共6题)
12.
已知抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,该抛物线与x轴的一个交点为P(4,0),则它与x轴的另一个交点Q的坐标是___,4a﹣2b+c的值为___.
4.解答题- (共6题)
17.
某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元
已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变
要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?




18.
如图①,直线y=﹣
x+8
与x轴交于点A,与直线y=
x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.
(1)填空:点A坐标为 ,点B的坐标为 ,∠CPD度数为 ;
(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;
(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;
(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.



(1)填空:点A坐标为 ,点B的坐标为 ,∠CPD度数为 ;
(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;
(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;
(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.

19.
某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需
降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出
商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?

(1)若设每件降价x元、每星期售出

(2)当降价多少元时,每星期的利润最大?最大利润是多少?
20.
“小组合作制”正在七年级如火如茶地开展,旨在培养七年级学生的合作学习的精神和能力,学会在合作中自主探索.数学课上,吴老师在讲授“角平分线”时,设计了如下四种教学方法:①教师讲授,学生练习;②学生合作交流,探索规律;③教师引导学生总结规律,学生练习;④教师引导学生总结规律,学生合作交流,吴老师将上述教学方法作为调研内容发到七年级所有同学手中要求每位同学选出自己最喜欢的一种,然后吴老师从所有调查问卷中随机抽取了若干份调查问卷作为样本,统计如下:

序号①②③④代表上述四种教学方法,图二中,表示①部分的扇形的中心角度数为36°,请回答问题:
(1)在后来的抽样调查中,吴老师共抽取_____位学生进行调查;并将条形统计图补充完整;
(2)图二中,表示③部分的扇形的中心角为多少度?
(3)若七年级学生中选择④种教学方法的有540人,请估计七年级总人数约为多少人?

序号①②③④代表上述四种教学方法,图二中,表示①部分的扇形的中心角度数为36°,请回答问题:
(1)在后来的抽样调查中,吴老师共抽取_____位学生进行调查;并将条形统计图补充完整;
(2)图二中,表示③部分的扇形的中心角为多少度?
(3)若七年级学生中选择④种教学方法的有540人,请估计七年级总人数约为多少人?
试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(2道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:7