1.单选题- (共5题)
2.选择题- (共2题)
6.
我们把分子为1的分数叫做理想分数,如 , , ,…,任何一个理想分数都可以写成两个不同理想分数的和,如 = + , = + , = + ,…,根据对上述式子的观察,请你思考:如果理想分数 = + (n是不小于2的整数,且a<b),那么b﹣a={#blank#}1{#/blank#}.(用含n的式子表示)
3.填空题- (共3题)
10.
在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为____________.

4.解答题- (共5题)
12.
某校为学生开展拓展性课程,拟在一块长比宽多6 m的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m的路,设计方案如图(2),已知每个大棚的周长为44 m.
(1)求每个大棚的长和宽各是多少?
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?
(1)求每个大棚的长和宽各是多少?
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?

14.
在平面直角坐标系中,O为原点,A为x轴正半轴上的动点,经过点A(t,0)作垂直于x轴的直线l,在直线l上取点B,点B在第一象限,AB=4,直线OB:y1=kx(k为常数).
(1)当t=2时,求k的值;
(2)经过O,A两点作抛物线y2=ax(x﹣t)(a为常数,a>0),直线OB与抛物线的另一个交点为C.
①用含a,t的式子表示点C的横坐标;
②当t≤x≤t+4时,|y1﹣y2|的值随x的增大而减小;当x≥t+4时,|y1﹣y2|的值随x的增大而增大,求a与t的关系式并直接写出t的取值范围.
(1)当t=2时,求k的值;
(2)经过O,A两点作抛物线y2=ax(x﹣t)(a为常数,a>0),直线OB与抛物线的另一个交点为C.
①用含a,t的式子表示点C的横坐标;
②当t≤x≤t+4时,|y1﹣y2|的值随x的增大而减小;当x≥t+4时,|y1﹣y2|的值随x的增大而增大,求a与t的关系式并直接写出t的取值范围.
试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:3
9星难题:3