1.单选题- (共9题)
5.
如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母 q表示(q≠0).如果
,
,且q>0,则
= ( ).



A.4 | B.8 | C.![]() | D.6 |
6.
如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数 y=x+1 的图像上,阴影图形 “
”的面积从左向右依次记为
则
的值为( )





A.3×![]() | B.3×![]() | C.3×![]() | D.3×![]() |
2.选择题- (共1题)
3.填空题- (共7题)
15.
对于二次函数
,有下列说法:
①如果当x≤1时
随
的增大而减小,则m≥1;
②如果它的图象与x轴的两交点的距离是4,则
;
③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;
④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.
其中正确的说法是 .

①如果当x≤1时


②如果它的图象与x轴的两交点的距离是4,则

③如果将它的图象向左平移3个单位后的函数的最小值是-4,则m=-1;
④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.
其中正确的说法是 .
4.解答题- (共9题)
21.
某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
类型 价格 | 进价(元/盏) | 售价(元/盏) |
A型 | 30 | 45 |
B型 | 50 | 70 |
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
23.
一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,设先发出车辆行驶的时间为 xh , 两车之间的距离为ykm,图中的折线表示 y与x之间的函数关系。根据图象回答下列问题:
(1)慢车的速度为________ km/h,快车的速度为__________km/h;
(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量 x的取值范围;
(3)当 x取何值时,两车之间的距离为300 km?
(1)慢车的速度为________ km/h,快车的速度为__________km/h;
(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量 x的取值范围;
(3)当 x取何值时,两车之间的距离为300 km?

24.
已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.

(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当
时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;②设△COD的OC边上的高为h,当t为何值时,h的值最大?

(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当

①求CD的长;②设△COD的OC边上的高为h,当t为何值时,h的值最大?
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(7道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:7