1.单选题- (共8题)
2.
如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )

A. (2,-3) B. (2,3) C. (3,2) D. (3,-2)

A. (2,-3) B. (2,3) C. (3,2) D. (3,-2)
7.
中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,将440000用科学记数法表示为( )
A.4.4×106 | B.4.4×105 | C.44×104 | D.0.44×105 |
8.
学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | 7 | 9 | 8 | 7 |
方差 | 1 | 1.2 | 1 | 1.8 |
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )
A.甲 | B.乙 | C.丙 | D.丁 |
2.填空题- (共4题)
9.
小明在他家里的时钟上安装了一个电脑软件,他设定当钟声在n点钟响起后,下一次则在(3n﹣1)小时后响起,例如钟声第一次在3点钟响起,那么第2次在(3×3﹣1=8)小时后,也就是11点响起,第3次在(3×11﹣1=32)小时后,即7点响起,以此类推…;现在第1次钟声响起时为2点钟,那么第3次响起时为_____点,第2017次响起时为_____点(如图钟表,时间为12小时制).

3.解答题- (共11题)
14.
小明化简(2x+1)(2x﹣1)﹣x(x+5)的过程如图,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程.
解:原式=2x2﹣1﹣x(x+5)…①
=2x2﹣1﹣x2+5x…②
=x2+5x﹣1 …③
解:原式=2x2﹣1﹣x(x+5)…①
=2x2﹣1﹣x2+5x…②
=x2+5x﹣1 …③
解:原式=2x2﹣1﹣x(x+5)…①
=2x2﹣1﹣x2+5x…②
=x2+5x﹣1 …③
解:原式=2x2﹣1﹣x(x+5)…①
=2x2﹣1﹣x2+5x…②
=x2+5x﹣1 …③
15.
列方程或方程组解应用题:
某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
17.
在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”
(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为
,求n的值;
(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣
,0)、(
,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.
(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(
,0),C(0,4),点P的坐标为(0,
),点Q的坐标为(m,
),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.
(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为

(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣


(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(




18.
在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2﹣m+1
(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;
(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.
(1)当抛物线的顶点在x轴上时,求该抛物线的解析式;
(2)不论m取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
(3)若有两点A(﹣1,0),B(1,0),且该抛物线与线段AB始终有交点,请直接写出m的取值范围.
19.
佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有 个,分别为 ;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.
x | … | ﹣3 | ﹣![]() | ﹣2 | ﹣![]() | ﹣1 | ﹣![]() | 0 | ![]() | 1 | ![]() | 2 | … |
y | … | ﹣8 | ﹣![]() | 0 | ![]() | m | ﹣![]() | ﹣2 | ﹣![]() | 0 | ![]() | 12 | … |
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有 个,分别为 ;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

20.
如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数
的图象上.

(1)求反比例函数
的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=
S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.



(1)求反比例函数

(2)在x轴的负半轴上存在一点P,使得S△AOP=

(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
21.
取一张正方形的纸片进行折叠,具体操作过程如下:
第一步:如图1,先把正方形ABCD对折,折痕为MN.
第二步:点G在线段 MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.
(1)判断△PBC的形状,并说明理由;
(2)作点C关于直线AP的对称点C′,连接PC′、DC′.
①在图2中补全图形,并求出∠APC′的度数;
②猜想∠PC′D的度数,并加以证明;(温馨提示:当你遇到困难时,不妨连接AC′、CC′,研究图形中特殊的三角形)
第一步:如图1,先把正方形ABCD对折,折痕为MN.
第二步:点G在线段 MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.
(1)判断△PBC的形状,并说明理由;
(2)作点C关于直线AP的对称点C′,连接PC′、DC′.
①在图2中补全图形,并求出∠APC′的度数;
②猜想∠PC′D的度数,并加以证明;(温馨提示:当你遇到困难时,不妨连接AC′、CC′,研究图形中特殊的三角形)

22.
某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:
(1)此次调查的样本容量是
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
(1)此次调查的样本容量是
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(4道)
解答题:(11道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:12
7星难题:0
8星难题:4
9星难题:5