1.单选题- (共8题)
2.
小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )

A. 垂线段最短 B. 经过一点有无数条直线
C. 经过两点有且只有一条直线 D. 两点之间线段最短

A. 垂线段最短 B. 经过一点有无数条直线
C. 经过两点有且只有一条直线 D. 两点之间线段最短
5.
甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()。
A.(98-x)+3=x-3 | B.(98-x)+3=x |
C.98-x=x-3 | D.98+x=x-3 |
2.填空题- (共10题)
12.
甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2017时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是___分.
3.解答题- (共9题)
22.
图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2节套管长46 cm,以此类推,每一节套管均比前一节套管少4 cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.

23.
如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 秒(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,试探索:在旋转过程中,∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化范围.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 秒(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,试探索:在旋转过程中,∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化范围.
24.
如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点D是折线A﹣C﹣B的“折中点”,请解答以下问题:
(1)已知AC=m,BC=n.
当m>n时,点D在线段 上;
当m=n时,点D与 重合;
当m<n时,点D在线段 上;
(2)若E为线段AC中点,EC=4,CD=3,求CB的长度.
(1)已知AC=m,BC=n.
当m>n时,点D在线段 上;
当m=n时,点D与 重合;
当m<n时,点D在线段 上;
(2)若E为线段AC中点,EC=4,CD=3,求CB的长度.

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(10道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:6
9星难题:9