1.单选题- (共3题)
1.
两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC
DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是( )





A.小红的运动路程比小兰的长 |
B.两人分别在1.09秒和7.49秒的时刻相遇 |
C.当小红运动到点D的时候,小兰已经经过了点D |
D.在4.84秒时,两人的距离正好等于⊙O的半径 |
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共5题)
11.
已知二次函数
.
(1)该二次函数图象的对称轴是x
;
(2)若该二次函数的图象开口向下,当
时,
的最大值是2,求当
时,
的最小值;
(3)若对于该抛物线上的两点
,
,当
,
时,均满足
,请结合图象,直接写出
的最大值.

(1)该二次函数图象的对称轴是x

(2)若该二次函数的图象开口向下,当




(3)若对于该抛物线上的两点






12.
如图,在△ABC中,
,
°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至
,连接
.已知AB
2cm,设BD为x cm,B
为y cm.

小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了
与
的几组值,如下表:
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3)结合画出的函数图象,解决问题:
线段
的长度的最小值约为__________
;
若
,则
的长度x的取值范围是_____________.







小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了


![]() | ![]() | 0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 |
![]() | 1.7 | 1.3 | 1.1 | | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3)结合画出的函数图象,解决问题:
线段


若



13.
如图,函数
(x<0)与y=ax+b的图象交于点A(﹣1,n)和点B(﹣2,1).
(1)求k,a,b的值;
(2)直线x=m与
(x<0)的图象交于点P,与y=﹣x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.

(1)求k,a,b的值;
(2)直线x=m与


试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(2道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:1