1.单选题- (共8题)
2.
如图,△ABC 中,BO 平分∠ABC,CO 平分∠ACB,MN 经过点 O,与 AB、AC 相交于点 M、N,且 MN∥BC,那么下列说法中:①∠MOB=∠MBO②△AMN 的周长等于 AB+AC;③∠A=2∠BOC﹣180°;④连接 AO,则
:
:
=AB:AC:BC;正确的有( )





A.①②④ | B.①②③ | C.①③④ | D.①②③④ |
2.填空题- (共7题)
9.
如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于
MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.


11.
如图,锐角三角形 ABC 和锐角三角形 A'B'C'中,AD、A'D'分别是边 BC、B'C'上的高,且AB=A'B',AD=A'D'.要使△ABC≌△A'B'C',则应补充条件:________(填写一个即可)

12.
如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过_____秒时,△DEB与△BCA全等.

3.解答题- (共8题)
17.
如图,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 边上一动点, CE⊥BD 于 E.
(1)如图(1),若 BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC;

(2)如图(2),过点 A 作 AF⊥BE 于点 F,猜想线段 BE,CE,AF 之间的数量关系并证明你的猜想.
(1)如图(1),若 BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC;

(2)如图(2),过点 A 作 AF⊥BE 于点 F,猜想线段 BE,CE,AF 之间的数量关系并证明你的猜想.
18.
如图,在平面直角坐标系中,A(0,a)、B(b,0)、C(c,0),且
=0.
(1)直接写出 A、B、C 各点的坐标:A_______;B__________;C_____;
(2)过 B 作直线 MN⊥AB,P 为线段 OC 上的一动点,AP⊥PH 交直线 MN 于点 H,证明:PA=PH.
(3)在(1)的条件下,若在点 A 处有一个等腰 Rt△APQ 绕点 A 旋转,且 AP=PQ,∠APQ=90°,连接 BQ,点 G 为 BQ 的中点,试猜想线段 OG 与线段 PG 的数量关系与位置关系,并证明你的结论.

(1)直接写出 A、B、C 各点的坐标:A_______;B__________;C_____;
(2)过 B 作直线 MN⊥AB,P 为线段 OC 上的一动点,AP⊥PH 交直线 MN 于点 H,证明:PA=PH.
(3)在(1)的条件下,若在点 A 处有一个等腰 Rt△APQ 绕点 A 旋转,且 AP=PQ,∠APQ=90°,连接 BQ,点 G 为 BQ 的中点,试猜想线段 OG 与线段 PG 的数量关系与位置关系,并证明你的结论.

19.
如图,CD 和 BE 是△ABC 的两条高,∠BCD=45°,BF=FC,BE与 DF、DC分别交于点 G、H,∠ACD=∠CBE.
(1)证明:AB=BC;
(2)判断 BH 与 AE 之间的数量关系,并证明你的结论;
(3)结合已知条件,观察图形,你还能发现什么结论?请写出两个(不与前面结论相同).
(1)证明:AB=BC;
(2)判断 BH 与 AE 之间的数量关系,并证明你的结论;
(3)结合已知条件,观察图形,你还能发现什么结论?请写出两个(不与前面结论相同).

20.
如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别沿两条直线行走,并同时到达 D,E 两地,DA⊥AB,EB⊥AB,D,E 与路段AB 的距离相等吗?为什么?

21.
如图,已知 A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)请在图中作出△ABC 关于 y 轴对称的△
,并求出△
的面积;
(2)写出
、
的坐标
__________;
__________;
(3)若△DBC 与△ABC 全等,则 D 的坐标为_____.
(1)请在图中作出△ABC 关于 y 轴对称的△


(2)写出




(3)若△DBC 与△ABC 全等,则 D 的坐标为_____.

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(7道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:7
9星难题:10