1.单选题- (共4题)
1.
某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x,则得到的方程为( )
A.112(1﹣x)2=63 | B.112(1+x)2=63 | C.112(1﹣x)=63 | D.112(1+x)=63 |
2.
如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是( )


A.6 | B.8 | C.12 | D.16 |
3.
一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为( )
A.v=![]() | B.v+t=480 | C.v=![]() | D.v=![]() |
2.填空题- (共3题)
7.
如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,N是A'B'的中点,连接MN,若BC=4,∠ABC=60°,则线段MN的最大值为_____.

3.解答题- (共5题)
10.
在直角坐标系xOy中,已知点P是反比例函数y=
(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,当⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由;
(2)如图2,当⊙P运动到与x轴相交,设交点为点B、C.当四边形ABCP是菱形时,求出点A、B、C的坐标;
(3)在(2)的条件下,求出经过A、B、C三点的抛物线的解析式.

(1)如图1,当⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由;
(2)如图2,当⊙P运动到与x轴相交,设交点为点B、C.当四边形ABCP是菱形时,求出点A、B、C的坐标;
(3)在(2)的条件下,求出经过A、B、C三点的抛物线的解析式.

11.
如图,已知反比例函数y=
的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).
(1)求n和b的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

(1)求n和b的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:7
7星难题:0
8星难题:0
9星难题:3