1.单选题- (共6题)
1.
如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°,则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=
S△ABC.其中正确的个数有( )



A.1个 | B.2个 | C.3个 | D.4个 |
6.
如图,有下列四种结论:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2个结论作为依据不能判定△ABC≌△ADC的是( )

A. ①② B. ①③ C. ①④ D. ②③

A. ①② B. ①③ C. ①④ D. ②③
2.填空题- (共6题)
10.
如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的总长度为________cm.

12.
如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发在直线BC上以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.当点E运动________s时,CF=AB.

3.解答题- (共11题)
18.
如图,在6×10的网格中,每个小正方形的边长均为1,每个小正方形顶点叫作格点,△ABC的三个顶点和点D,E,F,G,H,K均在格点上,现以D,E,F,G,H,K中的三个点为顶点画三角形.
(1)在图①中画出一个三角形与△ABC全等,如△DEG;
(2)在图②中画出一个三角形与△ABC面积相等但不全等,如△HFG.
(1)在图①中画出一个三角形与△ABC全等,如△DEG;
(2)在图②中画出一个三角形与△ABC面积相等但不全等,如△HFG.

19.
如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.
(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;
(2)在你设计的测量方案中,需要测量哪些数据?为什么?
(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;
(2)在你设计的测量方案中,需要测量哪些数据?为什么?

20.
小明和小亮在学习探索三角形全等时,碰到如下一题:如图①,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?

(1)请你帮他们解答,并说明理由;
(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE,DE,则有CE=DE,你知道为什么吗(如图②)?
(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有(2)中类似的结论.请你帮他在图③中画出图形,并写出结论,不要求说明理由.

(1)请你帮他们解答,并说明理由;
(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE,DE,则有CE=DE,你知道为什么吗(如图②)?
(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有(2)中类似的结论.请你帮他在图③中画出图形,并写出结论,不要求说明理由.
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(6道)
解答题:(11道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:13
7星难题:0
8星难题:5
9星难题:4