1.单选题- (共6题)
6.
国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为( )


A.6000米 | B.5000米 | C.4000米 | D.2000米 |
2.填空题- (共3题)
9.
如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于
长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接E

A.![]() (1)四边形ABEF是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果) (2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果) |
3.解答题- (共5题)
11.
某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量
(千克)与每千克售价
(元)满足一次函数关系,部分数据如下表:

(1)求
与
之间的函数表达式;
(2)设商品每天的总利润为
(元),则当售价
定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.



(1)求


(2)设商品每天的总利润为


(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
12.
已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
13.
如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数y=
的图象上.
(1)求反比例函数y=
的表达式;
(2)在x轴上是否存在一点P,使得S△AOP=
S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.


(1)求反比例函数y=

(2)在x轴上是否存在一点P,使得S△AOP=


试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:3
9星难题:3