1.单选题- (共7题)
2.填空题- (共8题)
12.
如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__.
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=__.

14.
如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:
≈1.41,
≈1.73)



3.解答题- (共7题)
16.
如图,在Rt△ABC中,∠C=90º,BD是△ABC的角平分线,点O在BD上,分别过点O作OE⊥BC,OF⊥AC,垂足为E,F,且OE=OF.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.

18.
按照题中提供的思路点拨,先填空,然后完成解答的全过程.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.
思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知条件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;
(2)要证BC+DC=AC,可将问题转化为证两条线段相等,即_=_;
(3)要证(2)中所填写的两条线段相等,可以先证明_.请写出完整的证明过程.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.
思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知条件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;
(2)要证BC+DC=AC,可将问题转化为证两条线段相等,即_=_;
(3)要证(2)中所填写的两条线段相等,可以先证明_.请写出完整的证明过程.

19.
我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.

21.
如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形.
(1)画出4种不同拼法(周长不等)的等腰三角形;
(2)分别求出4种不同拼法的等腰三角形的周长.
(1)画出4种不同拼法(周长不等)的等腰三角形;
(2)分别求出4种不同拼法的等腰三角形的周长.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(8道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:7
5星难题:0
6星难题:8
7星难题:0
8星难题:0
9星难题:6