1.单选题- (共10题)
3.
如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF全等的是( ) ①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.


A.①⑤② | B.①②③ | C.④⑥① | D.②③④ |
9.
如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是( )


A.△ABD和△CDB的面积相等 | B.△ABD和△CDB的周长相等 |
C.∠A+∠ABD=∠C+∠CBD | D.AD∥BC,且AD=BC |
10.
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=
AC•BD,其中正确的结论有()



A.0个 | B.1个 | C.2个 | D.3个 |
2.选择题- (共1题)
3.填空题- (共5题)
14.
△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为_____.

4.解答题- (共5题)
21.
定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.
性质:“朋友三角形”的面积相等.
如图1,在△ABC中,CD是AB边上的中线,
那么△ACD和△BCD是“朋友三角形”.并且
S
ACD=S
BCD
应用:如图2,在直角梯形ABCD中,∠ABC=90° ,AD∥BC, AB=AD=4,BC=6,点E在BC上,点F在AD上,BE=AF,AE与BF交于点O
(1)求证:△AOB和△AOF是“朋友三角形”;
(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE 的面积 .



图1 图2 图3
拓展:如图3, 在△ABC中,∠A=30° ,AB=8 ,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形” ,将△ACD沿CD所在直线翻折,得到△A'CD,若△A'CD与△ABC 重合部分的面积等于△ABC面积的 ,则△ABC的面积是 (请直接写出答案).
性质:“朋友三角形”的面积相等.
如图1,在△ABC中,CD是AB边上的中线,
那么△ACD和△BCD是“朋友三角形”.并且



应用:如图2,在直角梯形ABCD中,∠ABC=90° ,AD∥BC, AB=AD=4,BC=6,点E在BC上,点F在AD上,BE=AF,AE与BF交于点O
(1)求证:△AOB和△AOF是“朋友三角形”;
(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE 的面积 .



图1 图2 图3
拓展:如图3, 在△ABC中,∠A=30° ,AB=8 ,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形” ,将△ACD沿CD所在直线翻折,得到△A'CD,若△A'CD与△ABC 重合部分的面积等于△ABC面积的 ,则△ABC的面积是 (请直接写出答案).
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:2
9星难题:9