1.单选题- (共10题)
4.
某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
5.
如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是( )


A.24° | B.30° | C.32° | D.36° |
9.
已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有( )个.


A.1 | B.2 | C.3 | D.4 |
2.填空题- (共6题)
16.
如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:①.AD平分∠BAC;②.△BED≌△FPD;③.DP∥AB;④.DF是PC的垂直平分线.其中正确的是= _________ .(写序号)

3.解答题- (共8题)
19.
某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
20.
如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.
(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由.
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.
(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由.
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.

21.
等边△ABC中,AO是BC边上的高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.

(1)求证:△ACD≌△BCE
(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.

(1)求证:△ACD≌△BCE
(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.
22.
如图,正方形网格中每个小正方形边长都是 1.
(1)画出△ABC 关于直线 l 对称的图形△A1B1C1;
(2)在直线 l 上找一点 P,使 PB=PC;(要求在直线 l 上标出点 P 的位置)
(3)连接 PA、PC,计算四边形 PABC 的面积.
(1)画出△ABC 关于直线 l 对称的图形△A1B1C1;
(2)在直线 l 上找一点 P,使 PB=PC;(要求在直线 l 上标出点 P 的位置)
(3)连接 PA、PC,计算四边形 PABC 的面积.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:8
7星难题:0
8星难题:10
9星难题:4