1.单选题- (共15题)
2.
如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3,以A为旋转中心,逆时针旋转△ABC.当点B的对应点B1落在负半轴时,点B1所表示的数是( )


A.﹣2 | B.﹣2![]() | C.2![]() | D.1﹣2![]() |
7.
某施工队铺设一条长96米的管道,开工后每天比原计划多铺设2米,结果提前4天完成任务,求实际每天铺设管道的长度和实际施工的天数,琪琪同学根据题意列出方程:
=4.则方程中未知数表示( )

A.实际每天铺设管道的长度 | B.原计划每天铺设管道的长度 |
C.实际铺设管道的天数 | D.原计划铺设管道的天数 |
9.
已知∠BOP与OP上点C,点A(在A的左侧),嘉嘉进行如下作图:

①以点O为圆心,OC为半径画弧,交OB于点D,连接CD
②以点A为圆心,OC为半径画弧MN,交AP于点M
③以点M为圆心,CD为半径画弧,交MN于点E,连接ME,作射线AE
如图所示,则下列结论不成立的是( )

①以点O为圆心,OC为半径画弧,交OB于点D,连接CD
②以点A为圆心,OC为半径画弧MN,交AP于点M
③以点M为圆心,CD为半径画弧,交MN于点E,连接ME,作射线AE
如图所示,则下列结论不成立的是( )
A.CD∥EM | B.AE∥OB | C.∠ODC=∠AEM | D.∠OAE=∠BDC |
11.
如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为( )


A.60° | B.75° | C.90° | D.120° |
12.
如图所示,AB,CD,AE和CE均为笔直的公路,已知AB∥CD,AE与AB的夹角∠BAE为32°,若线段CF与EF的长度相等,则CD与CE的夹角∠DCE为( )


A.58° | B.32° | C.16° | D.15° |
14.
如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:
①AP的最小值是1,最大值是4;
②当AP=2时,△APO是等腰三角形;
③当AP=1时,△APO是等腰三角形;
④当AP=
时,△APO是直角三角形;
⑤当AP=
时,△APO是直角三角形.
其中正确的是( )

①AP的最小值是1,最大值是4;
②当AP=2时,△APO是等腰三角形;
③当AP=1时,△APO是等腰三角形;
④当AP=

⑤当AP=

其中正确的是( )

A.①④⑤ | B.②③⑤ | C.②④⑤ | D.③④⑤ |
2.填空题- (共3题)
17.
小明发明了一种用“二次根式法”来产生密码的方法,如对于二次根式
的计算结果是13,则在被开放数和结果时间加上数字0,就得到一个密码“169013”,则对于二次根式
,用小明的方法产生的这个密码是_____(密码中不写小数点)


18.
我们已经学习了一些定理,例如:
①直角三角形两条直角边的平方和等于斜边的平方;
②全等三角形的对应角相等;
③线段垂直平分线上的点到线段两端的距离相等;
④等腰三角形的两个底角相等
上述定理中存在逆定理的是_____(只填序号)
①直角三角形两条直角边的平方和等于斜边的平方;
②全等三角形的对应角相等;
③线段垂直平分线上的点到线段两端的距离相等;
④等腰三角形的两个底角相等
上述定理中存在逆定理的是_____(只填序号)
3.解答题- (共6题)
19.
(1)下面是李老师带领同学们探索
的近似值的过程,请你仔细阅读并补充完整:我们知道,面积是2的正方形的边长是
,且
>1,则设
=1+x(0<x<1),可画出如图所示的示意图.由各部分面积之和等于总面积.可列方程为:x2+ +1=2,∵0<x<1,∴认为x2是个较为接近于0的数,令x2≈0,因此省略x2后,得到方程: ,解得,x= ,即
=1+x≈ .
(2)请仿照(1)中的方法,若设
=1.7+y(0<y<1),求
的近似值(要求画出示意图,标明数据,并将
的近似值精确到千分位)





(2)请仿照(1)中的方法,若设




22.
如图,点E是等腰三角形纸片ABC外一点,∠ABC=90°,连接AE,点F是线段AE(不与点A,E重合)上一点,在△EBF中,EB=FB,∠EBF=90°,连接CE,CF
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.

23.
(发现)(1)如图1,在△ABC中,AD是∠BAC的平分线,对于以下结论:
①AD是△ABC的中线;②S△ABD:S△ACD=AB:AC;③AB:AC=BD:DC,
其中正确的是 (只填序号)
(探究)(2)请你选择(1)中正确的一个选项,简述理由
(应用)(3)如图2,△ABC的三个内角的角平分线相交于点O,且AB=40,BC=48,AC=32,则SABO:S△BCO:S△ACO= : :
(拓展)(4)在(1)中的条件下,过点D作DE⊥AB于点E,DF⊥AB于点F,连接EF,求证:AD垂直平分EF.
①AD是△ABC的中线;②S△ABD:S△ACD=AB:AC;③AB:AC=BD:DC,
其中正确的是 (只填序号)
(探究)(2)请你选择(1)中正确的一个选项,简述理由
(应用)(3)如图2,△ABC的三个内角的角平分线相交于点O,且AB=40,BC=48,AC=32,则SABO:S△BCO:S△ACO= : :
(拓展)(4)在(1)中的条件下,过点D作DE⊥AB于点E,DF⊥AB于点F,连接EF,求证:AD垂直平分EF.

试卷分析
-
【1】题量占比
单选题:(15道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:17
7星难题:0
8星难题:3
9星难题:4