1.单选题- (共5题)
2.填空题- (共4题)
9.
我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是_____ .

3.解答题- (共6题)
11.
如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A点出发沿AB以5cm/s的速度向点B移动,一直到达点B为止;同时,点Q从C点出发沿CD以3cm/s的速度向点D移动,经过多长时间P、Q两点之间的距离为10cm?

13.
(1)如图1,若点A坐标为(x1,y1),点B坐标为(x2,y2),作AD⊥x轴于点D,BE⊥y轴于点E,AD与BE相交于点C,则有AC=|y1﹣y2|,BC=|x1﹣x2|,所以,A、B两点间的距离为AB=
.
根据结论,若M、N两点坐标分别为(1,4)、(5,1),则MN= (直接写出结果).
(2)如图2,直线y=kx+1与y轴相交于点D,与抛物线y=
x2相交于A,B两点,A点坐标为(4,a),过点A作y轴的垂线交y轴于点C,E是AC中点,点P是第一象限内直线AB下方抛物线上一动点,连接PE、PD、ED;
①a= ,k= ,AD= (直接写出结果).
②若△DEP是以DE为底的等腰三角形,求点P的横坐标;
③求四边形CDPE的周长的最小值.

根据结论,若M、N两点坐标分别为(1,4)、(5,1),则MN= (直接写出结果).
(2)如图2,直线y=kx+1与y轴相交于点D,与抛物线y=

①a= ,k= ,AD= (直接写出结果).
②若△DEP是以DE为底的等腰三角形,求点P的横坐标;
③求四边形CDPE的周长的最小值.

14.
某商场以每件40元的价格购进一种服装,由试销知,每天的销售量t(件)与每件的销售价x(元)之间的函数关系为t=180﹣3x.
(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价﹣进货价);
(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?
(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价﹣进货价);
(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:1
9星难题:8