1.单选题- (共4题)
2.
有一块三角形的草坪△ABC,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在 ( )
A.△ABC三条角平分线的交点 | B.△ABC三边的垂直平分线的交点 |
C.△ABC三条中线的交点 | D.△ABC三条高所在直线的交点 |
4.
在△ABC和△A′B′C′中,AB= A′B′,∠B=∠B′,补充条件后仍不一定保证△ABC≌△A′B′C′,则补充的这个条件是( )
A.BC= B′C′ | B.AC= A′C′ | C.∠A=∠A′ | D.∠C=∠C′ |
2.选择题- (共2题)
3.填空题- (共8题)
4.解答题- (共12题)
15.
(2015秋•泰州校级期中)如图,有一个直角三角形ABC,∠C=90°,AC=8,BC=3,P、Q两点分别在边AC和过点A且垂直于AC的射线AX上运动,且PQ=AB.问当AP= 时,才能使△ABC和△PQA全等.


19.
(2015秋•泰州校级期中)如图,已知直线m⊥直线n于点O,点A到m、n的距离相等,在直线m或n上确定一点P,使△OAP为等腰三角形.试回答:

(1)符合条件的点P共有 个;
(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.

(1)符合条件的点P共有 个;
(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.
21.
(2015秋•泰州校级期中)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.

(1)若∠1=50°,求∠2、∠3的度数;
(2)若AD=8,AB=4,求BF.

(1)若∠1=50°,求∠2、∠3的度数;
(2)若AD=8,AB=4,求BF.
22.
小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了。她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由。(木条的厚度不计)

23.
(2014秋•化德县校级期末)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.

(1)求证:△ADC≌△AEB;
(2)判断△EGM是什么三角形,并证明你的结论;
(3)判断线段BG、AF与FG的数量关系并证明你的结论.

(1)求证:△ADC≌△AEB;
(2)判断△EGM是什么三角形,并证明你的结论;
(3)判断线段BG、AF与FG的数量关系并证明你的结论.
24.
(2015秋•泰州校级期中)阅读理解:
(1)如图(1),等边△ABC内有一点P到顶点A,B,C的距离分别为3,4,5,则∠APB= ,
分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌ ,这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,试猜想分别以线段BE、EF、CF为边能构成一个三角形吗?若能,试判断这个三角形的形状.

(1)如图(1),等边△ABC内有一点P到顶点A,B,C的距离分别为3,4,5,则∠APB= ,
分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌ ,这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,试猜想分别以线段BE、EF、CF为边能构成一个三角形吗?若能,试判断这个三角形的形状.

试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(2道)
填空题:(8道)
解答题:(12道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:16
7星难题:0
8星难题:2
9星难题:5