1.单选题- (共8题)
1.
为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A. 3,-1 B. 1,-3 C. -3,1 D. -1,3
A. 3,-1 B. 1,-3 C. -3,1 D. -1,3
2.
(2015秋•开江县期末)为了开展阳光体育活动,八年级1班计划购买毽子、跳绳若干和5个篮球三种体育用品,共花费200元,其中毽子单价3元,跳绳单价5元,篮球单价33元,购买体育用品方案共有( )
A.8种 | B.6种 | C.4种 | D.2种 |
3.
(2015秋•开江县期末)下列语句是真命题的是( )
A.过一点有且只有一条直线与已知直线平行 |
B.在直线l上截取一条线段AB,使AB=3cm |
C.在同一坐标系内,直线y=2x+3与直线y=x+3平行 |
D.三角形的一个外角大于任意一个内角 |
4.
已知:在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:
①a=3,b=4,c=
;
②a2:b2:c2=6:8:10;
③∠A:∠B:∠C=3:4:5;
④∠A=2∠B,∠C=3∠B.
其中能判断△ABC是直角三角形的条件为( )
①a=3,b=4,c=

②a2:b2:c2=6:8:10;
③∠A:∠B:∠C=3:4:5;
④∠A=2∠B,∠C=3∠B.
其中能判断△ABC是直角三角形的条件为( )
A.①② B. ①④ | B.②④ | C.②③ |
6.
(2015秋•开江县期末)八年级5班的李军同学为了解他家所在小区居民的用电情况,随机对该小区20户居民进行了调查,下表是这20户小区居民2015年10月份用电量的调查结果:那么关于这20户小区居民月用电量(单位:度),下列说法正确的是( )
居民(户) | 2 | 6 | 4 | 8 |
月用电量(度/户) | 40 | 50 | 55 | 60 |
A.中位数是55 | B.众数是8 | C.方差是29 | D.平均数是53.5 |
8.
(2015秋•开江县期末)王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共5题)
11.
(2015秋•开江县期末)如图,在△ABC中,AB=BC,∠ABC=20°,点E1在AB上,且AE1=AA1,点E2在A1E1上,且A1E2=A1A2,点E3在A2E2上,且A2E3=A2A3…A1、A2、A3、…An在CA的延长线上,则∠AnAn+1En= .


3.解答题- (共7题)
15.
(2015秋•开江县期末)阅读材料,善于思考的小军在解方程组
时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5
即2(2x+5y)+y=5③
把方程①代入③得:2×3+y=5
∴y=﹣1
把y=﹣1代入①得x=4
∴方程组的解为
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组
(2)已知x、y满足方程组
①求x2+4y2的值;
②求
的值.

解:将方程②变形:4x+10y+y=5
即2(2x+5y)+y=5③
把方程①代入③得:2×3+y=5
∴y=﹣1
把y=﹣1代入①得x=4
∴方程组的解为

请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组

(2)已知x、y满足方程组

①求x2+4y2的值;
②求

16.
(2015秋•开江县期末)据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.(参考数据:
)



17.
(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.

(1)若∠ACB=60°,求∠ECB的度数.
(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?

(1)若∠ACB=60°,求∠ECB的度数.
(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?
18.
(2015秋•开江县期末)A、B两地相距300千米,甲、乙两辆汽车同时分别从A、B两地相向而行,假设它们都保持匀速行驶,则它们各自到A地的距离s(千米)都是行驶时间t(时)的一次函数,图象如图所示,请利用所结合图象回答下列问题:

(1)甲的速度为 ,乙的速度为 ;
(2)求出:l1和l2的关系式;
(3)问经过多长时间两车相遇.

(1)甲的速度为 ,乙的速度为 ;
(2)求出:l1和l2的关系式;
(3)问经过多长时间两车相遇.
19.
(2015秋•开江县期末)如图,一次函数y1=x+m(m>0)的图象与x轴交于点A,一次函数y2=nx+2的图象与x轴交于点B,点P(
)是两函数图象的交点.

(1)求函数y1、y2的关系式;
(2)若∠PBA=64°,求∠APB的度数;
(3)求四边形PCOB的面积;
(4)在x轴上,是否存在一点Q,使以点Q、B、C为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.


(1)求函数y1、y2的关系式;
(2)若∠PBA=64°,求∠APB的度数;
(3)求四边形PCOB的面积;
(4)在x轴上,是否存在一点Q,使以点Q、B、C为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
20.
(2015秋•开江县期末)某文具经销店在开学时购进了A、B两种型号的计算器,已知:购进A型号的计算器20个,B型号的计算器25个需用1265元;购进A型号的计算器16个,B型号的计算器12个需用748元.求:
(1)A、B两种型号的计算器进价分别是多少元?
(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?
(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?
(1)A、B两种型号的计算器进价分别是多少元?
(2)在(1)的条件下,若A型号的计算器的售价是30元/个,B型号的计算器的售价是45元/个,商店一次性购进两种型号的计算器各20个,并全部销售,求商店所获利润是多少元?
(3)在两种型号计算器的进价和售价均保持不变的情况下,该商店准备购进A、B两种型号的计算器共40个,且A型号的计算器的数量不得少于5个,问:商店应怎样进货,才能使所获利润最大?最大利润是多少元?
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:11
7星难题:0
8星难题:2
9星难题:7