1.单选题- (共3题)
1.
已知△ABC的三条边长分别为3,5,7,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )
A.5条 | B.4条 | C.3条 | D.2条 |
3.
有四个三角形,分别满足下列条件,其中直角三角形有()
(1)一个内角等于另外两个内角之差:
(2)三个内角度数之比为3:4:5;
(3)三边长度之比为5:12:13;
(4)三边长分别为7、24、25.
(1)一个内角等于另外两个内角之差:
(2)三个内角度数之比为3:4:5;
(3)三边长度之比为5:12:13;
(4)三边长分别为7、24、25.
A.1个 | B.2个 | C.3个 | D.4个 |
2.填空题- (共7题)
3.解答题- (共9题)
11.
在数学实验课上,李静同学剪了两张直角三角形纸片,进行如下的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为 ;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为 ;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.

12.
如图,CD和BE是△ABC的两条高,∠BCD=45°,BF=FC,BE与DF、DC分别交于点G、H,∠ACD=∠CBE.

(1)判断△ABC的形状并说明理由;
(2)小明说:BH的长是AE的2倍.你认为正确吗?请说明理由.
(3)若BG=n2+1,GE=n2﹣1,求BH的长.

(1)判断△ABC的形状并说明理由;
(2)小明说:BH的长是AE的2倍.你认为正确吗?请说明理由.
(3)若BG=n2+1,GE=n2﹣1,求BH的长.
14.
阅读理解:

方法准备:
我们都知道:如图1,在四边形ABCD中,AD∥BC,∠B=90°,若AD=a,BC=b,AB=c,那么四边形ABCD的面积S=
.
如图2,在四边形ABCD中,两条对角线AC⊥BD,垂足为O,则四边形ABCD的面积=
AC×OD+
AC×OB=
AC×(OD+OB)=
AC×BD.
解决问题:
(1)我们以a、b 为直角边,c为斜边作两个全等的直角△ABE与△FCD,再拼成如图3所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE≌△FCD,AE⊥DF.请你证明:a2+b2=c2.
(2)固定△FCD,再将△ABE沿着BC平移到如图4所示的位置(此时B,F重合),请你继续证明:a2+b2=c2.
(3)当△ABE平移到如图5的位置,结论a2+b2=c2还成立吗?如果成立,请写出证明过程;如果不成立,请说明理由.

方法准备:
我们都知道:如图1,在四边形ABCD中,AD∥BC,∠B=90°,若AD=a,BC=b,AB=c,那么四边形ABCD的面积S=

如图2,在四边形ABCD中,两条对角线AC⊥BD,垂足为O,则四边形ABCD的面积=




解决问题:
(1)我们以a、b 为直角边,c为斜边作两个全等的直角△ABE与△FCD,再拼成如图3所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE≌△FCD,AE⊥DF.请你证明:a2+b2=c2.
(2)固定△FCD,再将△ABE沿着BC平移到如图4所示的位置(此时B,F重合),请你继续证明:a2+b2=c2.
(3)当△ABE平移到如图5的位置,结论a2+b2=c2还成立吗?如果成立,请写出证明过程;如果不成立,请说明理由.
16.
如图,已知△ABC,按下列语句要求用尺规作图(保留作图痕迹,不写作法);

(1)作出BC的垂直平分线DE,垂足为D,交AC于点E;
(2)作出∠ACB的角平分线CF,交AB于点F;
(3)在BC上找出一点P,使△PEF的周长最小.

(1)作出BC的垂直平分线DE,垂足为D,交AC于点E;
(2)作出∠ACB的角平分线CF,交AB于点F;
(3)在BC上找出一点P,使△PEF的周长最小.
试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(7道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:12
7星难题:0
8星难题:1
9星难题:5