1.单选题- (共9题)
7.
如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,若设计一种砌法,使矩形花园的面积为300m2.则AB长度为( )


A.10 | B.15 | C.10或15 | D.12.5 |
2.选择题- (共2题)
3.填空题- (共5题)
12.
我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果
,其中a、b为有理数,那么a= ,b= ;
(2)如果
,其中a、b为有理数,求a+2b的值.
运用上述知识,解决下列问题:
(1)如果

(2)如果

16.
如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点

A.若△DEB′为直角三角形,则BD的长是_______. |

4.解答题- (共7题)
20.
已知关于x的一元二次方程x2﹣4
x+12+m=0.
(1)若方程的一个根是
,求m的值及方程的另一根;
(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的周长.

(1)若方程的一个根是

(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的周长.
21.
如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:
(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.
(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求
+
的值;
(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.
(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.
(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求


(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.
22.
如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP=_________cm,BQ=_______cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于10
cm2?
(1)经过6秒后,BP=_________cm,BQ=_______cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于10


试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(2道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:2
9星难题:4