1.单选题- (共6题)
1.
把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m厘米,宽为n厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )


A.4m厘米 | B.4n厘米 | C.2(m+n)厘米 | D.4(m-n)厘米 |
6.
把四张形状大小完全相同的小正方形卡片(如图1)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子的底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分的周长和是( )


A.4mcm | B.4ncm | C.2(m+n)cm | D.4(m−n)cm |
2.填空题- (共7题)
10.
某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为xm/s,火车的长度为ym,根据题意得方程组为________________.
11.
若我们规定[x)表示大于x的最小整数,例如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0; ③[x)﹣x的最大值是0; ④存在实数x,使[x)﹣x=0.5成立.其中正确的是______________.(填写所有正确结论的序号)
3.解答题- (共7题)
15.
如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.

比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2

(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在虚框中画出图形,并根据图形回答(2a+b)(a+2b)="_____________"

(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你画的长方形,可得到恒等式_____________
(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式___________填写选项).


比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2

(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在虚框中画出图形,并根据图形回答(2a+b)(a+2b)="_____________"

(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你画的长方形,可得到恒等式_____________
(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式___________填写选项).

A.xy = ![]() | B.x+y=m | C.x2-y2=m·n | D.x2+y2 = ![]() |
17.
一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.
(1)甲车的速度是 米/小时,乙车的速度是 千米/小时,
B、C两地的距离是 千米, A、C两地的距离是 千米;
(2)这一天,乙车出发多长时间,两车相距200千米?
(1)甲车的速度是 米/小时,乙车的速度是 千米/小时,
B、C两地的距离是 千米, A、C两地的距离是 千米;
(2)这一天,乙车出发多长时间,两车相距200千米?
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(7道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:13
7星难题:0
8星难题:2
9星难题:3