1.单选题- (共5题)
2.
“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两
名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为( )

A.![]() | B.![]() | C.![]() | D.![]() |
4.
某校团委举办了“火红的五月红红的歌”歌咏比赛,王老师为鼓励同学们,带了100元钱去购买甲、乙两种奖品.已知甲奖品每件14元,乙奖品每件10元,每种至少买3件,则王老师购买方案共有( )
A.3种 | B.4种 | C.5种 | D.6种 |
2.填空题- (共5题)
3.解答题- (共6题)
12.
已知若一个关于x的方程可化为(ax+b)(cx+d)=0的形式,则可分别解出ax+b=0和cx+d=0得到x的值都是原方程的解. 根据以上信息,先化简,再求值:
,其中
满足方程a2-3a+2=0,并使分式成立.


13.
(本小题满分8分)某厂制作甲、乙两种环保包装盒。已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料。
(1)求制作每个甲盒、乙盒各用多少材料?
(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度
与甲盒数量
之间的函数关系式,并求出最少需要多少米材料。
(1)求制作每个甲盒、乙盒各用多少材料?
(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度


15.
如图,正方形ABCD的边长为8cm,分别过四个顶点A、B、C、D做四条直线EF、FG、GH、HE,并保证相邻两条直线垂直,相交于E、F、G、H四点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断无论如何按照上述要求作图,线段EG、AC的中点是否重合,并说明理由;
(3)判断四边形EFGH的面积有无最大值,若有请写出面积最大值,并说明理由.
(1)求证:四边形EFGH是正方形;
(2)判断无论如何按照上述要求作图,线段EG、AC的中点是否重合,并说明理由;
(3)判断四边形EFGH的面积有无最大值,若有请写出面积最大值,并说明理由.

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:3
9星难题:2