1.单选题- (共6题)
2.
如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,…P2019的位置,则点P2019的横坐标为( )


A.20l9 | B.2020 | C.2018.5 | D.2019.5 |
2.填空题- (共6题)
3.解答题- (共10题)
15.
某长途客运公司规定每位旅客可以免费托运一定重量的行李,超过部分则需缴交行李托运费.行李费托运费y(元)与行李重量x(千克)之间的函数关系如图所示.
(1)求y与x的函数关系式;
(2)每位旅客最多可以免费托运多少千克行李?
(3)某旅客行托运行李100千克,应交多少行李托运费?
(1)求y与x的函数关系式;
(2)每位旅客最多可以免费托运多少千克行李?
(3)某旅客行托运行李100千克,应交多少行李托运费?

16.
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为____km;图中点C的实际意义为:______;慢车的速度为_______,快车的速度为______;
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.
(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?
(1)甲、乙两地之间的距离为____km;图中点C的实际意义为:______;慢车的速度为_______,快车的速度为______;
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.
(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?

17.
如图①所示,直线L:y=kx+5k与x轴负半轴、y轴正半轴分别交于A、B两点.
(1)当OA=OB时,试确定直线L解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,连接OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若BN=3,求MN的长;
(3)当K取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想△ABP的面积是否改变,若不改变,请求出其值;若改变,请说明理由.
(4)当K取不同的值时,点B在y轴正半轴上运动,以AB为边在第二象限作等腰直角△ABE,则动点E在直线______上运动.(直接写出直线的表达式)

(1)当OA=OB时,试确定直线L解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,连接OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若BN=3,求MN的长;
(3)当K取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想△ABP的面积是否改变,若不改变,请求出其值;若改变,请说明理由.
(4)当K取不同的值时,点B在y轴正半轴上运动,以AB为边在第二象限作等腰直角△ABE,则动点E在直线______上运动.(直接写出直线的表达式)



18.
如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并说明理由.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并说明理由.

19.
已等腰Rt△ABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰Rt△ADE,∠DAE=90°.连接C

A. (1)如图,求证:△ACE≌△ABD; (2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由; (3)若AC= ![]() |

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(6道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:7
9星难题:6