1.单选题- (共6题)
6.
丽华根据演讲比赛中九位评委所给的分数作了如下表格:
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
平均数 | 中位数 | 众数 | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数 | B.众数 | C.方差 | D.中位数 |
2.填空题- (共4题)
10.
如图,在矩形ABCD中,有一个小正方形EFGH,其中顶点E,F,G分别在AB,BC,FD上.连接DH,如果BC=13,BF=4,AB=12,则tan∠HDG的值为______________.

3.解答题- (共6题)
14.
抛物线y=﹣
x2+
x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<
)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.
(1)点A,B,D的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.



(1)点A,B,D的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.

15.
如图①,已知点A在反比例函数
(x>0)的图像上,点B在经过点(-2,1)的反比例函数
(x<0)的图像上,连结OA,OB,A


A.![]() ![]() (1)求k的值; (2)若∠AOB=90°,求∠OAB的度数; (3)将反比例函数 ![]() ![]() ![]() |
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:2
7星难题:0
8星难题:7
9星难题:6