1.单选题- (共8题)
1.
有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( )
A.x(x﹣1)=21 | B.x(x﹣1)=42 |
C.x(x+1)=21 | D.x(x+1)=42 |
4.
如图,二次函数
的图象与
轴正半轴相交于A、B两点,与
轴相交于点C,对称轴为直线
且OA=OC,则下列结论:①
②
③
④关于
的方程
有一个根为
其中正确的结论个数有( )












A.1个 | B.2个 | C.3个 | D.4个 |
5.
将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 | B.y=(x+2)2+5 | C.y=(x﹣2)2﹣5 | D.y=(x﹣2)2+5 |
6.
如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC',若∠B =78°,则∠CC'B'的大小是( )


A.23° | B.30° | C.33° | D.39° |
2.填空题- (共4题)
12.
如图,等边三角形ABC内接于⊙O,点D是弧ACB上的一个动点(不与点A、B重合).连接BD.过点A作AE⊥BD,垂足为E,连接CE.若⊙O的半径为2cm,则CE长的最小值为_____cm.

3.解答题- (共4题)
14.
如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣
<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

15.
如图1、图2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,
(1)在图1中,AC与BD相等吗?请说明理由;
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗?为什么?
(1)在图1中,AC与BD相等吗?请说明理由;
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗?为什么?

试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:4
7星难题:0
8星难题:4
9星难题:6