1.单选题- (共11题)
3.
如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )


A.重合 |
B.关于x轴对称 |
C.关于y轴对称 |
D.宽度不变,高度变为原来的一半 |
4.
如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1…过点A1作y轴的垂线交L2于点A2,过点A2作x轴的垂线交于点A3,过点A3作y轴的垂线交L2于点A4,依次进行下去,则点A2018的坐标为( )


A.(﹣21009,21009) | B.(﹣21009,﹣21010) |
C.(﹣1009,1009) | D.(﹣1009,﹣2018) |
5.
园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:m2)与工作时间t(单位:h)的函数关系如图所示,则该园林队休息后与休息前相比较( )


A.每小时绿化面积相同 | B.每小时绿化面积多40m2 |
C.每小时绿化面积少20m2 | D.每小时绿化面积少10m2 |
6.
A、B两地相距20千米,甲、乙两人都从A地去B地,图中射线l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.
下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时,乙的速度是6千米/小时;
④乙先到达B地.其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时,乙的速度是6千米/小时;
④乙先到达B地.其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
9.
如图,AD是△ABC的中线,点E、F分别是射线AD上的两点,且DE=D
A.则下列结论不正确的是( )![]() | |
B.△BDF≌△CDE | C.△ABD和△ACD面积相等 |
D.BF∥CE | E.AE=BF |
10.
如图,在△ABC中,AB=AC,∠C=65°.点E、D分别在AB、AC上,将其沿ED所在直线折叠,点A恰好与点B重合,那么∠DBC的度数为( )


A.10° | B.15° | C.20° | D.25° |
2.选择题- (共1题)
3.填空题- (共7题)
15.
如图1,在长方形ABCD中,点P是CD中点,点Q从点A开始,沿着A→B→C→P的路线匀速运动,设△APQ的面积是y,点Q经过的路线长度为x,图2坐标系中折线OEFG表示y与x之间的函数关系,点E的坐标为(4,6),则点G的坐标是_____.

4.解答题- (共7题)
22.
如图(1),在平面直角坐标系中,直线y=﹣
x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD⊥AB于D,交y轴于点E.
(1)求证:△COE≌△BOA;
(2)如图2,点M是线段CE上一动点(不与点C、E重合)
,ON⊥OM交AB于点N,连接MN.
①判断△OMN的形状.并证明;
②当△OCM和△OAN面积相等时,求点N的坐标.

(1)求证:△COE≌△BOA;
(2)如图2,点M是线段CE上一动点(不与点C、E重合)

①判断△OMN的形状.并证明;
②当△OCM和△OAN面积相等时,求点N的坐标.

23.
某服装店一次性购进甲、乙两种保暖内衣共100件进行销售,甲、乙两种保暖内衣的进价与售价分别如下表所示:
设购进甲种保暖内衣的数量为x(件).
(l)设进货成本为y(元),求y与x之间的函数关系式;
(2)若除了进货成本以外,从进货到销售完这批内衣的过程中还要支付运费和销售员工工资共200元,设销售完这批保暖内衣的总利润为w(元),请求出w与x之间的函数关系式;
(3)在(2)的情况下,根据市场需求调研发现,甲种保暖内衣的购进数量不能低于50件,求购进甲种内衣多少件时,这批保暖内衣销售完获利最多?最多可获利多少元?
| 甲 | 乙 |
进价 | 80元/件 | 100元/件 |
售价 | 120元/件 | 150元/件 |
设购进甲种保暖内衣的数量为x(件).
(l)设进货成本为y(元),求y与x之间的函数关系式;
(2)若除了进货成本以外,从进货到销售完这批内衣的过程中还要支付运费和销售员工工资共200元,设销售完这批保暖内衣的总利润为w(元),请求出w与x之间的函数关系式;
(3)在(2)的情况下,根据市场需求调研发现,甲种保暖内衣的购进数量不能低于50件,求购进甲种内衣多少件时,这批保暖内衣销售完获利最多?最多可获利多少元?
24.
小明和爸爸周末步行去游泳馆游冰,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.两人离家的距离y(米)与小明所走时间x(分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:
(1)小明出发 分钟后第一次与爸爸相遇;
(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;
(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;
(4)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆.
(1)小明出发 分钟后第一次与爸爸相遇;
(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;
(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;
(4)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆.

25.
如图,点M是线段AB中点,AD、BC交于点N,连接AC、BD、MC、MD,∠l=∠2,∠3=∠4.
(1)求证:△AMD≌△BMC;
(2)图中在不添加新的字母的情况下,请写出除了“△AMD≌△BMC”以外的所有全等三角形,并选出其中一对进行证明.
(1)求证:△AMD≌△BMC;
(2)图中在不添加新的字母的情况下,请写出除了“△AMD≌△BMC”以外的所有全等三角形,并选出其中一对进行证明.

试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(1道)
填空题:(7道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:11
9星难题:9