1.单选题- (共9题)
2.填空题- (共5题)
3.解答题- (共7题)
17.
如图1,已知五边形OABCD的顶点O在坐标原点,点A在y轴上,点D在x轴上,AB∥x轴,CD∥y轴,动点P从点O出发,以每秒1单位的速度,沿五边形OABCD的边顺时针运动一周,顺次连结P,O,A三点所围成图形的面积为S,点P的运动时间为t秒,S与t之间的函数关系如图2中折线OEFGHI所示.
(1)求证:AB=2;
(2)求五边形OABCD的面积.
(3)求直线BC的函数表达式;
(4)若直线OP把五边形OABCD的面积分成1:3两部分,求点P的坐标.
(1)求证:AB=2;
(2)求五边形OABCD的面积.
(3)求直线BC的函数表达式;
(4)若直线OP把五边形OABCD的面积分成1:3两部分,求点P的坐标.

18.
某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y元与每月用水量xm3之间的关系如图所示.
(1)求关于x的函数解析式;
(2)若某用户二、三月份共用水22m3(二月份用水量比三月份用水量多),缴纳水费共35元,则该用户二月份的用水量是多少m3?
(1)求关于x的函数解析式;
(2)若某用户二、三月份共用水22m3(二月份用水量比三月份用水量多),缴纳水费共35元,则该用户二月份的用水量是多少m3?

19.
(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=
a,S=
a2.
(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②求∠ADB的度数.
③若AD=2,BD=4,求△ABC的面积.
(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CD于F,连接AD,BE.
①求∠EAF的度数;
②若CD=5,BD=2,求BC的长.


(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②求∠ADB的度数.
③若AD=2,BD=4,求△ABC的面积.
(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CD于F,连接AD,BE.
①求∠EAF的度数;
②若CD=5,BD=2,求BC的长.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:6
7星难题:0
8星难题:5
9星难题:10