1.单选题- (共10题)
6.
已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有( )个.


A.1 | B.2 | C.3 | D.4 |
9.
下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等 |
B.有两边和一角对应相等的两个三角形全等 |
C.有两边和其中一边上的中线对应相等的两个三角形全等 |
D.有一边对应相等的两个等边三角形全等 |
2.选择题- (共1题)
11.
“北极收割机”温室是一个漂浮的半圆建筑,本质是可循环利用的无土栽培农业基础设施,通过利用营养丰富的冰山淡水资源进行大规模水培农业生产,为当地居民供给新鲜的水果和蔬菜,帮助原本贫瘠的冰川国家改善生活。读图,完成下列各题。
3.填空题- (共4题)
4.解答题- (共9题)
19.
多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.
(1)第一次水果的进价是每千克多少元?
(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
(1)第一次水果的进价是每千克多少元?
(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
20.
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(-4,5),C(-1,3).
(1)请在如图所示的网格内作出x轴、y轴;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标并求出△A1B1C1的面积.
(1)请在如图所示的网格内作出x轴、y轴;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标并求出△A1B1C1的面积.

22.
如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.
(1)点D在边AB上时,证明:AB=FA+BD;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.
(1)点D在边AB上时,证明:AB=FA+BD;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.

23.
如图,D为等边△ABC的边AC上一点,E为直线AB上一点,CD=BE.
(1)如图1,求证;AD=DE;
(2)如图2,DE交CB于点P.
①若DE⊥AC,PC=6,求BP的长;
②猜想PD与PE之间的数量关系,并证明你的结论.
(1)如图1,求证;AD=DE;
(2)如图2,DE交CB于点P.
①若DE⊥AC,PC=6,求BP的长;
②猜想PD与PE之间的数量关系,并证明你的结论.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(4道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:14
7星难题:0
8星难题:1
9星难题:4