1.单选题- (共12题)
4.
已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()
A.1.239×10﹣3g/cm3 | B.1.239×10﹣2g/cm3 |
C.0.1239×10﹣2g/cm3 | D.12.39×10﹣4g/cm3 |
6.
A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用时9小时,已知水流速度为4千米/时,已知水流速若设该轮船在静水中的速度为x千米/时,则可列方程( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共2题)
3.填空题- (共8题)
21.
如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.下列说法:①∠BCH=∠CAE;②DF=EF;③CE=BH;④S△ABE=2S△ACE;⑤CF=
DF.正确的是_____.


4.解答题- (共9题)
28.
为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器160台,A型号家用净水器进价是1500元/台,售价是2100元/台;B型号家用净水器进价是3500元/台,售价是4300元/台.为保证售完这160台家用净水器的利润不低于116000元,求A型号家用净水器最多能购进多少台?(注:利润=售价-进价)
29.
如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.
(1)求证:∠ABD=∠ACD;
(2)若∠ACB=65°,求∠BDC的度数.
(1)求证:∠ABD=∠ACD;
(2)若∠ACB=65°,求∠BDC的度数.

30.
已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.
(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;
(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.
(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;
(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.

试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(2道)
填空题:(8道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:19
7星难题:0
8星难题:5
9星难题:5