1.单选题- (共11题)
2.选择题- (共2题)
3.填空题- (共6题)
4.解答题- (共9题)
21.
阅读下列材料:
材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).
(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)
材料2、因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把x2﹣6x+8分解因式.
(2)结合材料1和材料2,完成下面小题:
①分解因式:(x﹣y)2+4(x﹣y)+3;
②分解因式:m(m+2)(m2+2m﹣2)﹣3.
材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).
(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)
材料2、因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把x2﹣6x+8分解因式.
(2)结合材料1和材料2,完成下面小题:
①分解因式:(x﹣y)2+4(x﹣y)+3;
②分解因式:m(m+2)(m2+2m﹣2)﹣3.
23.
台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.
25.
如图,已知Rt△MBN的两条直角边与正方形ABCD的两邻边重合,∠M=30°,O为AB中点,NO平分∠BNM,EO平分∠AEN.
(1)求证:△MON为等腰三角形;
(2)求证:EN=AE+BN.
(1)求证:△MON为等腰三角形;
(2)求证:EN=AE+BN.

26.
如图,在平面直角坐标系中,点A的坐标是(a,0)(a>0),点C是y轴上的一个动点,点C在y轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边△AOB(此时点P与点B重合).
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;
(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠PAE的度数和E点的坐标;
(3)若∠APB=30°,则点P的横坐标为 .
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;
(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠PAE的度数和E点的坐标;
(3)若∠APB=30°,则点P的横坐标为 .

27.
如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE延长线于点D,CF平分∠ACB交BD于点F,连接CD.
求证:(1)AD=CF;
(2)点F为BD的中点.
求证:(1)AD=CF;
(2)点F为BD的中点.

试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:10
9星难题:12