1.单选题- (共7题)
2.选择题- (共1题)
8.读一读,选一选。
顽强 刚强 坚强
①在这次战役中,我军{#blank#}1{#/blank#}作战,终于歼灭敌人,取得了胜利。
②明明是个{#blank#}2{#/blank#}的孩子,他不会为这件事而流泪的。
忘却 忘记 忘怀
③爸爸工作太忙了,他{#blank#}3{#/blank#}了今天是自己的生日。
④母亲对我无微不至的照顾,使我终身难以{#blank#}4{#/blank#}。
3.填空题- (共8题)
13.
某园林公司增加了人数和挖坑机进行园林绿化,现在平均每天比原计划多植树30棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,则根据题意列出的方程是_____.
4.解答题- (共12题)
17.
在同一平面内的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).
如图,等腰直角三角形ABC的一条直角边AB垂直数轴于点D,斜边AC与数轴交于点E,数轴上点O表示的有理数是0,若AB=BC=8,AD=6,OD=2.点O到边BC的距离与线段DB的长相等.
(1)求d(点O,点E);
(2)求d(点O,△ABC).
如图,等腰直角三角形ABC的一条直角边AB垂直数轴于点D,斜边AC与数轴交于点E,数轴上点O表示的有理数是0,若AB=BC=8,AD=6,OD=2.点O到边BC的距离与线段DB的长相等.
(1)求d(点O,点E);
(2)求d(点O,△ABC).

18.
阅读下面的解题过程:
已知
,求代数式
的值.
解:由
,取倒数得,
=4,即2y2+3y=1.
所以4y2+6y﹣1=2(2y2+3y)﹣1
=2×1﹣1=1,
则可得
=1.
该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:
已知
,求
的值.
已知


解:由


所以4y2+6y﹣1=2(2y2+3y)﹣1
=2×1﹣1=1,
则可得

该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:
已知


24.
已知:如图1,过等腰直角三角形ABC的直角顶点A作直线AP,点B关于直线AP的对称点为E,连接BE,CE,其中CE交直线AP于点F.

(1)依题意补全图形;
(2)若∠PAB=16°,求∠ACF的度数;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.

(1)依题意补全图形;
(2)若∠PAB=16°,求∠ACF的度数;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.
26.
下面是小晶设计的“作互相垂直的两条直线”的尺规作图过程.
作法:如图,
①在平面内任选一点O,作射线OA,OB;
②以O为圆心,以任意长为半径作弧,分别交OA于点C,交OB于点D;
③分别以C,D为圆心,以大于
CD的同样长为半径作弧,两弧交于∠AOB内部一点P;
④连接CP、PD;
⑤作直线OP,作直线CD,两直线相交于点E;则直线CD与OP就是所求作的互相垂直的两条直线.根据小晶设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵OC= ,CP= ,OP=OP
∴△OPC≌△OPD
∴∠AOP=∠BOP.
∴OE是△COD的高线( )(填推理的依据)
即OE⊥CD.
∴CD与OP互相垂直
作法:如图,
①在平面内任选一点O,作射线OA,OB;
②以O为圆心,以任意长为半径作弧,分别交OA于点C,交OB于点D;
③分别以C,D为圆心,以大于

④连接CP、PD;
⑤作直线OP,作直线CD,两直线相交于点E;则直线CD与OP就是所求作的互相垂直的两条直线.根据小晶设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵OC= ,CP= ,OP=OP
∴△OPC≌△OPD
∴∠AOP=∠BOP.
∴OE是△COD的高线( )(填推理的依据)
即OE⊥CD.
∴CD与OP互相垂直

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(8道)
解答题:(12道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:20
7星难题:0
8星难题:0
9星难题:7