1.单选题- (共6题)
2.
要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )
A.x(x﹣1)=30 | B.x(x+1)=30 |
C.![]() | D.![]() |
5.
如图,正比例函数y1=k1x的图象与反比例函数y2=
的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是( )

A. x<﹣2或x>2 B. x<﹣2或0<x<2
C. ﹣2<x<0或0<x<2 D. ﹣2<x<0或x>2


A. x<﹣2或x>2 B. x<﹣2或0<x<2
C. ﹣2<x<0或0<x<2 D. ﹣2<x<0或x>2
2.填空题- (共3题)
3.解答题- (共6题)
10.
小红准备实验操作:把一根长为20cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于13cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)要使这两个正方形的面积之和最小,小红该怎么剪?
(1)要使这两个正方形的面积之和等于13cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)要使这两个正方形的面积之和最小,小红该怎么剪?
12.
已知二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0).
(1)求此二次函数的解析式;
(2)在直角坐标系中描点,并画出该函数图象;
(3)根据图象回答:当函数值y<0时,求x的取值范围.
(1)求此二次函数的解析式;
(2)在直角坐标系中描点,并画出该函数图象;
x | … | _____ | ____ | ____ | _____ | _____ | … |
y | … | _____ | ____ | ____ | ____ | _____ | … |
(3)根据图象回答:当函数值y<0时,求x的取值范围.

13.
如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.
(1)求3m+n的值;
(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.
(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.
(1)求3m+n的值;
(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.
(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.

14.
如图的反比例函数图象经过点A(2,5)
(1)求该反比例函数的解析式;
(2)过点A作AB⊥x轴,垂足为B,在直线AB右侧的反比例函数图象上取一点C,若△ABC的面积为20,求点C的坐标.
(1)求该反比例函数的解析式;
(2)过点A作AB⊥x轴,垂足为B,在直线AB右侧的反比例函数图象上取一点C,若△ABC的面积为20,求点C的坐标.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:5
7星难题:0
8星难题:4
9星难题:4