1.单选题- (共6题)
3.
某校组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式是( )
A.x(x+1)=28 | B.![]() |
C.x(x-1)=28 | D.2x(x-1)=28 |
6.
如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点A、D、E在同一直线上,∠ACB=n°,则∠ADC的度数是( )


A.(m﹣n)° | B.(90+n-![]() | C.(90-![]() | D.(180﹣2n﹣m)° |
2.填空题- (共2题)
3.解答题- (共7题)
10.
已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表:
(1)求二次函数的解析式;
(2)直接写出不等式ax2+bx+c﹣2>0的解集是 .
x | …… | ﹣1 | 0 | 1 | 4 | …… |
y | …… | 12 | 6 | 2 | 2 | …… |
(1)求二次函数的解析式;
(2)直接写出不等式ax2+bx+c﹣2>0的解集是 .
11.
如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于点E.
(1)求抛物线的函数表达式;
(2)求线段DE长度的最大值.
(1)求抛物线的函数表达式;
(2)求线段DE长度的最大值.

12.
如图1,直线AB与x轴、y轴分别交于点A(3,0)、B,动点P从原点出发,以每秒1个单位长度的速度向点A运动,到达点A立即停止.点C(﹣1,0),以P为直角顶点,PC为直角边向x轴上方作等腰Rt△PQC,△PQC与△AOB重叠部分面积为S,点P运动时间为t(秒),S关于t的函数图象如图2所示(其中0≤t≤
,
≤t≤3时,函数解析式不同).
(1)当t=
时,S的值为 ;
(2)求直线AB的解析式;
(3)求S关于t的解析式,并写出t的取值范围.


(1)当t=

(2)求直线AB的解析式;
(3)求S关于t的解析式,并写出t的取值范围.

13.
如图,抛物线y=ax2+2ax﹣3a(a>0)交x轴于A、B两点,交y轴于点C,抛物线的顶点为D.
(1)填空:抛物线的对称轴为 ,点A的坐标为 ;点B的坐标为 ;
(2)若△ADC的面积为3,求抛物线的解析式;
(3)在(2)的条件下,当m≤x≤m+1,y的取值范围是﹣4≤y≤2m,求m的值.
(1)填空:抛物线的对称轴为 ,点A的坐标为 ;点B的坐标为 ;
(2)若△ADC的面积为3,求抛物线的解析式;
(3)在(2)的条件下,当m≤x≤m+1,y的取值范围是﹣4≤y≤2m,求m的值.

14.
阅读材料:小明遇到这样一个问题:如图1,在△ABC中,AB=AC,过点B作射线BE,点D为射线BE上的点,连接AD、CD,且∠BDC=∠BAC,求证:AD平分∠CDE.小明认真观察图形,又发现一对相等的角,利用相等的一对角和一对边,过点A作双垂直,构造全等三角形,如图2,从而将问题解决.
(1)根据阅读材料,证明AD平分∠CDE;
用学过的知识或参考小明的方法,解决下面的问题:
(2)如图3,在Rt△ABC中,∠ACB=90°,∠A=α,将Rt△ABC绕点A逆时针旋转得到△AEF(点C的对应点为点F),连接BE、FC,延长FC交B于点M.
①找出图中与∠BCM相等的角,并加以证明;
②猜想线段CF与BM之间的数量关系(用含α的式子表示),并证明你的猜想.
(1)根据阅读材料,证明AD平分∠CDE;
用学过的知识或参考小明的方法,解决下面的问题:
(2)如图3,在Rt△ABC中,∠ACB=90°,∠A=α,将Rt△ABC绕点A逆时针旋转得到△AEF(点C的对应点为点F),连接BE、FC,延长FC交B于点M.
①找出图中与∠BCM相等的角,并加以证明;
②猜想线段CF与BM之间的数量关系(用含α的式子表示),并证明你的猜想.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(2道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:6
7星难题:0
8星难题:3
9星难题:3