1.单选题- (共7题)
3.
下列说法中:①三边对应相等的两个三角形全等;②三角对应相等的两个三角形全等;③两边和它们的夹角对应相等的两个三角形全等;④两角及其中一角的对边对应相等的两个三角形全等;⑤两边及其中一边的对角对应相等的两个三角形全等;不正确的是( )
A.①② | B.②④ | C.④⑤ | D.②⑤ |
7.
如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是


A.BC=EC,∠B=∠E | B.BC=EC,AC=DC |
C.BC=DC,∠A=∠D | D.∠B=∠E,∠A=∠D |
2.选择题- (共1题)
3.填空题- (共8题)
15.
如图,D,E是边BC上的两点,AD=AE,∠ADB=∠AEC,现要直接用“AAS”定理来证明三角形全等,请你再添加一个条件:______________________使△ABD≌△ACE(AAS).

4.解答题- (共6题)
17.
某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.

21.
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,证明:△ABD≌△ACE,DE=BD+CE;
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D, A, E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D, A, E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:6
5星难题:0
6星难题:8
7星难题:0
8星难题:1
9星难题:6