福建省莆田市2019届九年级4月联考数学试题

适用年级:初三
试卷号:192306

试卷类型:月考
试卷考试时间:2019/4/25

1.单选题(共4题)

1.
的相反数是
A.2B.C.D.
2.
点A(x,y)为平面直角坐标系内一点,其中x,y满足3,x+2,y-4中的两个数相等,则所有的点A组成的图形为
A.一个点B.两条相交的直线C.一个三角形D.相交于一点的三条直线
3.
若二次函数在坐标平面上的图形有最低点,则a的值可以是
A.a=0B.a=2C.a=4D.a=6
4.
长度分别为的三条线段能组成一个三角形,的值可以是()
A.B.C.D.

2.填空题(共2题)

5.
已知关于x的方程有一个根为1,则a的值为________________.
6.
如图,含30°的直角三角板ABC(其中∠ABC=90 )的三个顶点均在反比例函数的图象上,且斜边AC经过原点O,则直角三角板ABC的面积为_____________.

3.解答题(共6题)

7.
化简求值:,其中.
8.
解方程:=0
9.
如图1是某品牌的一款学生斜持包,其挎带由单层部分、双层部分和调节扣组成.设单层部分的长度为xcm,双层部分的长度为ycm,经测景,得到如下数据:
x(cm)
0
4
6
8
10

120
y(cm)
M
58
57
56
55

n
 
(1)如图2,在平面直角坐标系中,以所测得数据中的x为横坐标,以y为纵坐标,描出所表示的点,并用平滑曲线连接,并根据图象猜想求出该函数的解析式;

(2)若小花要购买一个持带长为125cm的斜挎包,该款式的斜挎包是否满足小花的需求?请说明理由,(挎带的总长度=单层部分长度+双层部分长度,其中调节扣的长度忽略不计)
10.
若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线“等边抛物线”.
(1)若对任意m,n,点M(m,n)和点N(-m+4,n)恒在“等边抛物线”上,求抛物线的解析式;
(2)若抛物线“等边抛物线”,求的值;
(3)对于“等边抛物线”,当1<x<m吋,总存在实数b。使二次函数的图象在一次函数y=x图象的下方,求m的最大值.
11.
问题提出学习了全等三角形的判定方法(“SSS”“SAS”“ASA”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
初步思考:将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DE
A.然后对∠ABC进行分类,可分为“∠ABC是锐角、直角、钝角”三种情况进行探究。
第一种情况:当∠ABC是锐角时,AB=DE不一定成立;
第二种情况:当∠ABC是直角时,根据“HL”,可得△ABC≌ΔDEF,则AB=DE;
第三种情况:当∠ADC是钝角时,则AB=DE.
如图,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC是钝角,求证:AB=DE.
方法归纳化归是一种有效的数学思维方式,一般是将未解决的问题通过交换转化为已解决的问题.观群发现第三种情况可以转化为第二种情况,如图,过点C作CG⊥AB交廷长线于点
B.
(1)在ΔDEF中用尺规作出DE边上的高FH,不写作法,保留作图痕迹;
(2)请你完成(1)中作图的基础上,加以证明AB=DE.
12.
电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
电影部数
140
50
300
200
800
510
获得好评的电影部数
56
10
45
50
160
51
 
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率:
(2)电影公司为增加投资回报,需在调查前根据经验预估每类电影的好评率(好评率是指:一类电影中获得好评的部数与该类电影的部数的比值),如表所示:
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
预估好评率
0.5
0.2
0.15
0.15
0.4
0.3
 
定义统计最其中为第i类电影的实际好评率,为第i类电影的预估好评率(i=1,2,...,n).规定:若S<0.05,则称该次电影的好评率预估合理,否则为不合理,判断本次电影的好评率预估是否合理.
试卷分析
  • 【1】题量占比

    单选题:(4道)

    填空题:(2道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:3

    7星难题:0

    8星难题:6

    9星难题:2